Myroniuk Tetiana

THE LANGUAGE OF SCIENTIFIC DISCOVERY:

Academic English Tests for PhD Students

NATIONAL ACADEMY OF SCIENCES OF UKRAINE Research and Educational Center for Foreign Languages

Myroniuk Tetiana

THE LANGUAGE OF SCIENTIFIC DISCOVERY: Academic English Tests for PhD Students

УДК 811.111

Рекомендовано до друку вченою радою Центру наукових досліджень та викладання іноземних мов НАН України

Рецензенти:

Жалай В.Я., кандидат філологічних наук, доцент, директор Центру наукових досліджень та викладання іноземних мов НАН України

Шпенюк І.Є., кандидат філологічних наук, доцент кафедри іноземних мов ННІМВ Київського національного університету імені Тараса Шевченка

Миронюк Т. Мова наукових відкриттів: тести з академічної англійської для аспірантів. The Language of Scientific Discovery: Academic English Tests for PhD Students. – Навчальний посібник. – К.: Видавниче підприємство "ЕДЕЛЬВЕЙС," 2026. – 76 с.

ISBN 978-617-7619-71-9 print ISBN 978-617-7619-72-6 ebook

Навчальний посібник створено для аспірантів та усіх, хто вивчає англійську мову на рівні С1 відповідно до Загальноєвропейських рекомендацій з мовної освіти. Посібник містить тексти, засновані на біографіях видатних учених природничих і точних наук, що відображають еволюцію наукової думки та етичні виклики сучасності. До кожного тексту розроблено тести на розуміння прочитаного, лексико-граматичні завдання, що спрямовані на розвиток аналітичного мислення й вміння аргументовано висловлюватися англійською мовою. Матеріали посібника можуть бути використані як у рамках аудиторного навчання, так і самостійної підготовки до кваліфікаційних і міжнародних іспитів.

The course book is intended for PhD students and advanced learners of English, in accordance with the Common European Framework of Reference for Languages. It brings together texts inspired by the lives and achievements of eminent scholars in the natural and the formal sciences, reflecting the evolution of scientific thought and the ethical challenges of modern research. Each text is accompanied by carefully designed reading comprehension tasks, as well as lexical and grammatical exercises aimed at fostering critical thinking and helping learners communicate complex ideas in English with clarity and precision. The materials are suitable for use in academic classroom settings and for independent preparation for qualification examinations and international proficiency tests.

ISBN 978-617-7619-71-9 print ISBN 978-617-7619-72-6 ebook

TABLE OF CONTENTS

PREFACE	4
TEST 1. James Lovelock.	5
TEST 2. Henri Poincaré.	9
TEST 3. Daniel Augusto da Silva.	12
TEST 4. Murray Gell-Mann.	16
TEST 5. Alfred Russel Wallace	19
TEST 6. Carl Linnaeus.	22
TEST 7. Charles Darwin.	25
TEST 8. Isaac Newton.	29
TEST 9. Chandrasekhara Venkata Raman	33
TEST 10. James Chadwick.	36
TEST 11. Richard Feynman.	39
TEST 12. Steven Weinberg.	42
TEST 13. Lise Meitner.	45
TEST 14. Augusta Ada Byron.	48
TEST 15. Edward Jenner.	51
TEST 16. Alexander von Humboldt.	54
TEST 17. Hans Albrecht Bethe.	58
TEST 18. Barbara McClintock.	61
TEST 19. John Clive Ward.	64
TEST 20. Marie Curie.	67
ANSWER KEY	71
RECOMMENDED RESOURCES	76

PREFACE

"The Language of Scientific Discovery" is a collection of academic English tests for PhD students who aim to refine their command of English for advanced academic and professional purposes. The texts and tasks included here are drawn from biographies of world-renowned scientists across disciplines, including physics, biology, chemistry, mathematics, medicine, and others. This integration of language learning within a scientific context not only strengthens linguistic competence but also promotes a deeper understanding of scientific discourse as a cultural and intellectual phenomenon. Each test combines reading comprehension, vocabulary, and grammar practice to enhance students' ability to process complex academic texts, critically analyze information, and express themselves with precision and fluency.

The collection is guided by current trends in English language teaching and assessment, particularly those emphasizing content and language integrated learning (CLIL), task-based learning, and critical thinking development. It encourages learners to approach scientific texts not merely as linguistic material but as opportunities for inquiry, reflection, and argumentation. The variety of exercises supports learner autonomy, allowing students to monitor their progress and to identify specific areas for improvement.

In addition to language testing, this book promotes academic integrity, cross-cultural communication, and clarity of expression – skills essential for participation in the global research community. The tests are suitable for both classroom use and independent study, including hybrid and online learning formats. They may also serve as preparation for institutional qualification exams or international proficiency tests such as IELTS Academic, TOEFL, or CAE.

By combining scientific content with linguistic precision, "The Language of Scientific Discovery" reflects a broader vision of education – one where language is not simply a tool for communication, but a medium for critical thought, creativity, and the dissemination of knowledge. It is believed that this collection will assist PhD students and researchers in mastering the language of science while cultivating the intellectual curiosity that drives discovery itself.

I. Read the text and answer the questions that follow.

James Lovelock (1919–2022) was a British <u>scientist</u> best known for developing Gaia theory, an idea that changed the way we think about the planet. According to this theory, Earth functions like a living organism, where living beings and the environment interact continuously to keep conditions stable. Although this idea seemed unusual when Lovelock first introduced it in the 1970s, it later became the foundation for Earth systems science, a modern and integrated approach to studying the planet.

Born in 1919, Lovelock lived to the remarkable age of 103. He was a true polymath – a person with expertise in a wide range of scientific fields. His ideas combined deep scientific research with creative thinking. In the 1960s, while working for NASA, Lovelock helped develop an instrument designed to measure atmospheric gases on Mars. The results revealed that Mars lacked signs of life, as its atmosphere consisted of stable gases, without the mixture of oxygen and other elements typically produced by living organisms. This experiment helped Lovelock develop his ideas about life and its effect on a planet.

He later applied the same thinking to Earth. Lovelock explained how tiny ocean organisms such as phytoplankton release chemicals that help form clouds. These clouds then cool the planet by reflecting sunlight. This was one example of how life and the environment are connected through <u>feedback loops</u> that keep the Earth's systems in balance.

Lovelock named his idea "Gaia" after the Greek goddess of the Earth. Some people misunderstood it as a spiritual or religious idea, but Lovelock always said it was a scientific theory. According to Gaia theory, Earth has natural systems that can regulate temperature and other conditions – just like the human body does. However, Lovelock warned that this system has limits. If humans continue to damage the environment, Earth's ability to keep balance could be lost.

Later in his life, Lovelock supported some ideas that were <u>controversial</u>. He believed that nuclear energy and geoengineering – technology designed to change the Earth's climate – might help reduce global warming. He also suggested that people should live in large cities and rely more on artificial intelligence to protect the environment. While not everyone agreed with him, his main goal was always to find ways to avoid environmental disaster.

In addition to being a theorist, Lovelock was also a <u>prolific</u> inventor. He created several scientific instruments, including one that helped scientists discover chemicals that were damaging the ozone layer. Holding around 40 patents, he often worked <u>independently</u>, which allowed him the freedom to explore <u>unconventional</u> ideas.

Through his research and inventions, Lovelock changed how people understand

our relationship with the planet. His Gaia theory continues to remind us that we are not separate from nature, but an integral part of it – and that we share the <u>responsibility</u> to protect our planetary home.

(After: Who was James Lovelock, what is Gaia theory, and why does it matter today? https://www.abc.net.au/news/science/2022-08-06/james-lovelock-legacy-gaia-climate-science-lynn-margulis/101297574)

- 1. What is the main idea of the Gaia theory?
 - a. Earth's temperature is controlled by the Sun
 - b. Living beings and the environment work together to keep balance on Earth
 - c. Weather is controlled only by oceans
 - d. Humans can live separately from nature
- 2. How did Lovelock's work with NASA influence Gaia theory?
 - a. He created new farming tools
 - b. He proved there was life on Mars
 - c. He developed an idea about how atmospheres show signs of life
 - d. He found oxygen on Mars
- 3. Why did some people misunderstand the name "Gaia"?
 - a. It came from a scientific formula
 - b. It sounded like a religious or spiritual idea
 - c. It was a Greek word for science
 - d. It meant balance in chemistry
- 4. What warning did Lovelock give about Earth's systems?
 - a. They are unchangeable and permanent
 - b. They will always support human life
 - c. They can stop working if humans harm the planet too much
 - d. They are controlled by technology
- 5. What made Lovelock different from many other scientists?
 - a. He never worked with others
 - b. He only believed in nature, not in machines
 - c. He had many inventions and worked independently
 - d. He worked only in universities
- 6. The underlined phrase <u>scientist</u> could best be replaced by which of the following:
 - a. software engineer b. critic
- c. investigator
- d. philosopher

7.	The underlined wo	ord <u>polymath</u> coul	d best be replaced	by which of the
	following:		1 17:1: 11:	,
	a. technician		b. multidisciplinary	y expert
0	c. novice	1 1	d. mathematician	
8.	The underlined wo	ord <u>expertise</u> could	d best be replaced	by which of the
	following:			
	a. guesswork		b. hobby	
	c. ignorance	0 11 1 1	d. proficiency	
9.	The underlined phr	ase <u>feedback loops</u>	could best be repla	ced by which of the
	following:			
	a. simple problems		b. repeated warning	•
	•		esponses d. compute	
10	. The underlined word	_	•	
	•	b. control	c. copy	d. freeze
11.	The underlined wo	rd <u>controversial</u> co	ould best be replace	ed by which of the
	following:			
	a. generally accepte	d	b. difficult to unde	rstand
	c. popular		d. disputed	
12	.The underlined ph	rase <u>prolific</u> could	d best be replaced	by which of the
	following:			
	_	_	c. productive	
13	.The underlined wo	rd independently c	ould best be replace	ed by which of the
	following:			
	a. with many sponse	ors	b. autonomously	
	c. as a school teache	er	d. for government	labs
14	. The underlined wo	rd <u>unconventional</u>	could best be replac	ed by which of the
	following:			
	a. alternative	b. creative	c.basic	d. popular
15	.The underlined wo	rd responsibility co	ould best be replace	ed by which of the
	following:			
	a. duty	b. freedom	c. distraction	d. opinion
	II. Complete the fol	lowing s <i>antanca</i> s		
	11. Complete the join	owing sentences.		
16	.Lovelock,	groundbreaking ide	as combined science	e and imagination,
	remained influential	for decades.		
	a. who	b. which	c. whose	d. whom
17	. He believed the pla	net could keep bala	ance, p	eople didn't push it
	too far.			
	a. unless	b if	c. although	d because

18. If he had not v	worked with NASA, I	he develope	d the theory much
later.			
a. will have	b. would have	c. might	d. has
19. Lovelock believ	ved that the atmosphe	ere on Mars was too sta	able life to
exist.			
a. so that	b. for	c. for that	d. in order
20. Although his su	apport for nuclear ene	ergy was controversial,	it from his
desire to preven	t environmental disast	ter.	
a. results	b. resulting	c. resulting in	d. resulted
21. If humans	more about	feedback systems, they	might protect the
planet better.			
a. understand	b. understood	c. will understand	d. understands
22. One of his inver	ntions is	dangerous chemicals in	the air.
a. detecting	b. detect	c. detected	d. detection
23. Not only did L	Lovelock create influe	ntial theories, but he al	lso several
scientific instru			
a. invents	b. invented	c. has invented	d. inventing
24. Some people di	dn't agree with his ide	as, he contin	ued to share them.
a. so	b. but	c. because	d. unless
25. Lovelock's the	ory gained recognition	on only after other sci	ientists its
relevance to Ear	rth system science.		
a. had demonstr	rated	b. demonstrate	
c. demonstrating	g	d. have demonstrate	ed

I. Read the text and answer the questions that follow.

Henri Poincaré (1854–1912) was one of the greatest scientists of his time. He was known for his ability to work in many different fields, including mathematics, physics, astronomy, engineering, and philosophy. Because of his wide knowledge, he is often called "the last universalist."

Poincaré was born in Nancy, France. From a young age, he showed a strong interest in science and a deep <u>curiosity</u> about the world. During his life, he travelled to many countries in Europe, as well as to Africa and the United States. His experiences and education helped him <u>approach</u> science from many perspectives.

He made major <u>contributions</u> to mathematics, especially in a new field called topology, which is the study of shapes and space. He also discovered key ideas in what is now known as <u>chaos</u> theory, which shows how small changes can lead to very different results. In physics, he studied light, motion, and electromagnetism, and some of his work was later <u>connected</u> to Einstein's theory of relativity.

Although Poincaré influenced many areas of science, he was never awarded the Nobel Prize. However, he received many other <u>honors</u>, such as the Gold Medal of the Royal Astronomical Society and the Bolyai Prize. He was also <u>elected</u> to scientific academies around the world and became president of the French Academy of Sciences. Poincaré also taught at the Sorbonne and worked for the Corps des Mines, a French engineering agency.

In addition to his research, Poincaré was interested in how scientific ideas are created. In 1908, he gave a famous lecture on the process of mathematical <u>invention</u>. This talk attracted attention from other scholars, who later studied his methods to understand how creativity works in science.

Henri Poincaré left behind a powerful <u>legacy</u>. His work in mathematics, physics, and scientific thinking continues to inspire researchers today. His ability to connect different fields reminds us that science is not only about facts, but also about imagination and discovery. (After: A Biography of Henri Poincaré - 2012 Centenary of the Death of Poincaré https://arxiv.org/abs/1207.0759)

- 1. Why is Henri Poincaré often referred to as "the last universalist"?
 - a. Because he focused exclusively on one scientific discipline
 - b. Because he contributed to a wide range of scientific fields
 - c. Because he developed a universal language
 - d. Because he wrote extensively about universal laws
- 2. How can topology be best described?
 - a. A mathematical field concerned with the properties of shapes and spatial relationships

		sics dealing with mot		
	•	etrical currents in ma used on chemical read		
	a. That predictable ofb. That small varioutcomesc. That all scientific	eory primarily illustrations outcomes result from fations in initial continuous theories are uncertained for follow perfect circles.	complex systems anditions can lead to	o vastly different
	never receive? a. The Fields Meda b. The Nobel Prize c. The Bolyai Prize	1	n major scientific av	vard did Poincaré
	attention? a. The historical de b. The study of elect c. The practical app	velopment of physics etromagnetic phenom lications of engineer	nena	
	The underlined wo	ord <u>universalist</u> cou	ld best be replaced	by which of the
	a. expert in one subc. local scientist		b. polymath d. beginner t be replaced by which	h of the following:
	a. interest	b. sadness	c. pressure	d. fear
	The underlined w following:	ord <u>approach</u> could	d best be replaced	by which of the
	a. explore	b. defend	c. ignore	d. repeat
	The underlined wo following:	ord contributions co	uld best be replaced	by which of the
	a. failures	b. interruptions	c suggestions	d. discoveries
		-	be replaced by which	
10	a. confusion	b. control	c. unpredictability	_

b. compared

following: a. linked

11. The underlined word connected could best be replaced by which of the

c. separated

d. ignored

12				hich of the following:
	a. gifts	b. awards	c. punishments	d. names
13	. The underlined w	ord <u>elected</u> could	best be replaced by w	which of the following:
	a. chosen	b. avoided	c. dismissed	d. removed
14	. The underlined	word invention	could best be repla	ced by which of the
	following:			
	a. disruption	b. mistake	c. damage	d. design
15	. The underlined w	ord <u>legacy</u> could b	pest be replaced by wh	hich of the following:
	a. future	b. story	c. heritage	d. legal principles
	II. Complete the f	ollowing sentence	S.	
16.	Henri Poincaré	born in Nancy	y, France, in 1854.	
	a. is	b. was	c. has been	d. had been
17.	Despite his many	achievements, Poi	incarénever awa	arded the Nobel Prize.
	a. was	b. is	c. has been	d. had been
18.	If Poincaré	more wide	ely recognized during	his lifetime, he might
	have influenced m	ore scientists.		
	a. was	b. were	c. has been	d. had been
19.	Poincaré gave a fa	amous lecture in 19	908, attracted a	attention from scholars
	interested in creati	•		
	a. which	b. who	c. whom	d. whose
20.	He worked across	many fields,	mathematics, phys	ics, and philosophy.
	a. including	b. include	c. included	d. includes
21.	The ideas that Po	oincaré introduced	l important i	n the development of
	modern physics.			
	a. is	b. was	c. are	d. has been
22.	Poincaré made dis	scoveries in what	is now known as cha	aos theory, a field that
	how 1	minor changes can	produce major effect	ts.
	a. explore	b. explores	c. explored	d. exploring
23.	Not only Poir	ncaré contribute to	theoretical science, l	but he also his
	ideas to engineering	ng, demonstrating	his practical mindset.	
	a. does applied		b. had applie	es
	c. did applied		d. was apply	ring
24.	By the time he ga	ave his famous lec	ture in 1908, Poincar	ré several
	major contribution	is to mathematics a	and physics.	
	a. makes	b. had made	c. has made	d. was making
25.	Poincaré's ability today		ent fields is one reason	on why his legacy still
			c. continued	d. has continued

I. Read the text and answer the questions that follow.

Daniel Augusto da Silva (1814–1878) was a Portuguese mathematician whose <u>visionary</u> work in number theory and combinatorics earned him posthumous recognition as a pioneer of discrete mathematics.

Born in Lisbon during a period of civil unrest, da Silva showed early talent in mathematics and science. He entered the Royal Navy Academy at the age of 15 and later continued his studies at the University of Coimbra, graduating with distinction. He returned to the Navy Academy to teach subjects such as mechanics, astronomy, optics, geography, hydrography, artillery, and fortification. However, chronic health issues <u>disrupted his career</u>, forcing him to retire from active military service and relocate to the island of Madeira to recover.

Despite physical limitations and relative <u>isolation</u>, da Silva remained intellectually active. He was elected a <u>corresponding member</u> of the Lisbon Academy of Sciences, and later became a full member. Working largely alone and publishing only in Portuguese, he produced research of <u>remarkable</u> quality – although his language and location made international recognition difficult.

Da Silva's most well-known contribution is the formulation of the Principle of Inclusion-Exclusion, a technique in combinatorics that allows for the precise counting of elements in overlapping sets. While today this method is standard in discrete mathematics, da Silva was the first to formally articulate it. He also made progress in solving systems of linear congruences, contributing to what would later become foundational results in number theory. Furthermore, his research extended into other areas, including statistics, binomial congruences, and continued fractions. Some of his results were rediscovered decades later by others who were unaware of his original publications. In addition to pure mathematics, da Silva explored problems in applied science, including fluid dynamics and the modelling of flame propagation. These studies anticipated developments in thermodynamics and combustion theory, fields not yet fully developed during his lifetime.

Although he never gained a university chair or widespread academic fame, da Silva continued his work until his death. He left behind not only a family but also a <u>legacy</u> of intellectual integrity and creativity. His writings reflect a poetic <u>sensitivity</u> to mathematical structure, which is why contemporary scholars describe him as a "poet of mathematics."

Today, da Silva is recognized as one of the most important Portuguese scientists of the 19th century. His ideas – once hidden by language and geography – now hold a respected place in the history of mathematics. His life illustrates the challenges faced by isolated scholars and the <u>enduring</u> value of clear, original thought.

(After: Daniel Augusto da Silva, Poet of Mathematics https://arxiv.org/abs/1812.06267)

- 1. What is implied by the term "posthumous recognition" in this context?
 - a. He was awarded prizes shortly before his death
 - b. His recognition began during retirement
 - c. His work was translated during his lifetime
 - d. He became appreciated only after his death
- 2. What is Daniel da Silva best known for?
 - a. Teaching at Coimbra University
 - b. Writing a poetry collection
 - c. Creating the Principle of Inclusion-Exclusion
 - d. Studying astronomy
- 3. Why did Daniel da Silva's contributions remain largely unnoticed during his lifetime?
 - a. His work was considered incorrect by his peers
 - b. He worked in isolation and published in a non-dominant language
 - c. He focused on military rather than academic topics
 - d. He refused to publish his theories
- 4. What does the author mean by "rediscovery" of his results?
 - a. Other scientists replicated his methods without reading him
 - b. His manuscripts were lost and later found
 - c. He plagiarized others
 - d. He copied his own work in new forms
- 5. Why was da Silva described as "a poet of mathematics"?
 - a. He wrote poetry on scientific subjects
 - b. His proofs often included metaphors
 - c. His mathematical writing displayed clarity and elegance
 - d. He taught literature as well
- 6. The underlined word <u>visionary</u> could best be replaced by which of the following:
 - a. unimaginative b. short-sighted
- c. forward-thinking d. outdated
- 7. The underlined phrase <u>disrupted his career</u> could best be replaced by which of the following:
 - a. improved his work

b. paused his vacation

c. interrupted his career

d. supported his goals

8. The underlined word <u>isolation</u> of following:	could best be replaced	by which of the
a. partnership b. poverty	c. connection	d. separation
9. The underlined word corresponding		
following:		•
a. part-time b.travelling	c.associate	d.financial
10. The underlined word remarkable		
following:	•	•
a. impressive b. ordinary	c. forgettable	d. doubtful
11. The underlined word <u>decade</u> could l	best be replaced by which	of the following:
a. a year b. a century	c. a month	d. ten years
12. The underlined word anticipated	could best be replaced	by which of the
following:		
a. ignored b. predicted	c. rejected	d. delayed
13. The underlined word <u>legacy</u> could be	pest be replaced by which	of the following:
a. inheritance b. forgetfulness	s c. burden	d. obstacle
14. The underlined word <u>sensitivity</u>	could best be replaced	by which of the
following:		
a. indifference b. awareness	c. hardness	d. ignorance
15. The underlined word enduring of	could best be replaced	by which of the
following:		
a. temporary b.forgotten	c. weak	d. lasting
II. Complete the following sentence	es.	
16. Daniel da Silva born in	n 1814.	
a is b. was		d. had
17. He continued to work,		
	c. instead	d. although
18. He published his research		_
recognition.		
a. despite b. in	c. on	d. at
19. If he had published in English, he _	better known.	
a. is b. would be	c. would have been	d. was
20. Da Silva's work red	iscovered decades after	his death by other
mathematicians.		
a. is b. was	c. has been	d. had been
21. His contributions to combina	atorics, t	he Principle of
Inclusion-Exclusion, remain fundan		
a. including b. included	c. includes	d. include

22. Da Silva's contributions, some of _		were only red	cognized much later,	
	show the depth of	his originality.		
	a. which	b. them	c. whom	d. whose
23.	. Not only	an excellen	t researcher, but he also e	explored problems in
	applied science.			
	a. he was	b. was he	c. he did	d. did he
24.	Some of his findir	ıgs	by other mathematicians	without realizing he
	had already publis	hed them.		
	a. have been duplie	cated	b. were duplicated	
	c. are duplicating		d. duplicated	
25.	The method he	leveloped is no	w widely used,	it was largely
	unknown during h	is lifetime.		
	a. unless	b. because	c. although	d. so

I. Read the text and answer the questions that follow.

Murray Gell-Mann (1929–2019) was a <u>pioneering</u> American physicist whose work transformed our understanding of the fundamental building blocks of matter. Often described as one of the most creative minds in 20th-century science, he developed theories that laid the foundation for particle physics as we know it today.

Born in New York City to immigrant parents, Gell-Mann showed signs of exceptional intelligence from a young age. He entered Yale University at 15 and completed his PhD at MIT by the age of 21. His career was marked by outstanding academic achievements and collaborations with some of the most important physicists of his time, including Victor Weisskopf and Richard Feynman. In 1955, he joined the California Institute of Technology (Caltech), where he spent much of his career.

Gell-Mann's most celebrated contribution to physics was the <u>classification</u> system known as the "Eightfold Way", a method he used to organise subatomic particles called hadrons. This elegant framework was based on symmetry principles and helped scientists make sense of what had become known as the "particle <u>zoo</u>"—a growing list of elementary particles being discovered in the mid-20th century. His model led directly to the <u>prediction</u> of the omega-minus particle, which was later observed experimentally, confirming the accuracy of his approach.

Building on this success, Gell-Mann proposed the idea of quarks – tiny, indivisible units that make up hadrons such as protons and neutrons. He chose the term "quark" from a line in James Joyce's novel *Finnegans Wake*, showing his flair for connecting science with literature. Although quarks were initially a <u>theoretical</u> idea, they have since become central to the Standard Model of particle physics.

In 1969, Gell-Mann was awarded the Nobel Prize in Physics for his contributions to the theory of elementary particles. His work went far beyond classification; he also made major advances in quantum field theory, including work on the renormalization group – a concept that explains how physical systems behave differently at different scales. His <u>insights</u> have shaped areas ranging from quantum electrodynamics to statistical mechanics.

Gell-Mann's intellectual interests extended well beyond physics. He co-founded the Santa Fe Institute, an <u>interdisciplinary</u> research centre focused on complex systems. He was fascinated by patterns and order not just in the universe, but also in language, biology, and human behaviour. His later work often explored connections between scientific disciplines, showing how deep structures govern complexity across nature and society. His theories about <u>symmetry</u>, <u>structure</u>, and simplicity have influenced generations of physicists and remain essential to our understanding of the universe at its most <u>fundamental</u> level. (*After: The Science of Murray Gell-Mann https://arxiv.org/abs/1909.07354*)

1. What is Murray Gell-Mann most famous for? a. Inventing a new type of microscope b. Organising subatomic particles through the Eightfold Way c. Teaching literature at Yale d. Developing nuclear energy 2. What did the discovery of the omega-minus particle confirm? a. That Gell-Mann's work was based on chemistry b. That quarks do not exist c. That Gell-Mann's classification of particles was correct d. That symmetry principles are unreliable 3. Why did Gell-Mann choose the name "quark"? a. It was a Greek word for symmetry b. It was the name of a scientist c. He liked short, simple words d. He found it in a line from a novel 4. What was the goal of the Santa Fe Institute? a. To study particle accelerators b. To research physics education c. To explore complex systems across disciplines d. To promote government science funding 5. What does the text suggest about Gell-Mann's personality? a. He worked only in physics and had narrow interests b. He enjoyed connecting ideas from different fields c. He avoided teamwork d. He was not interested in theory 6. The underlined word pioneering could best be replaced by which of the following: a. cautious b. traditional c. innovative d. uncertain 7. The underlined word classification could best be replaced by which of the

c forecast

c. destruction

d. observation

d mistake

c. chaotic collection d. wild animals

8. The underlined word <u>zoo</u> could best be replaced by which of the following:

9. The underlined word <u>prediction</u> could best be replaced by which of the

b.organisation

b. machine

b. calculation

following: a. mixing

a. laboratory

following:

a. denial

10.	The underlined wo following:	ord theoretical coul	d best be replaced	by which of the
	· ·	b. lab-tested	c unimportant	d concentual
11	=	d <u>insight</u> could best b	_	_
11.		b. guesswork		
12		=	=	
12.		rd <u>interdisciplinary</u> c	ould best be replace	d by which of the
	following:	1 1 1	1.	1 (* 11
		b. slow-paced		
13.		ord symmetry could	l best be replaced	by which of the
	following:			
	a. balance and regu	larity b. surprise	c. speed	d. danger
14.	The underlined w	ord <u>structure</u> could	best be replaced	by which of the
	following:			
	a. framework	b. confusion	c. decoration	d. movement
15.	The underlined wo	ord <u>fundamental</u> cou	ald best be replaced	l by which of the
	following:			
	a. easy	b.essential	c. fashionable	d. entertaining
	•			_
	II. Complete the fol	llowing sentences.		
16.		remained influential l	ong after he	active research.
		b. has stopped		
17		ed 21, he		an was stepped
- / .		b. earned		d was earning
18		d at Caltech, he		_
10.		b. would have		
10		ystem Gell-Mann dev		
19.			_	e Eighnold way,
		nciples of symmetry.		4 14
20		b. is basing		
20.		particle had not been		
.		kened b. weakened		
21.		introduce		
		b. what		d. which
22.		by many at first, b		
	a. to reject	b. rejecting	c. rejected	d. reject
23.	Not only	explore physics, b	ut also linguistics and	d biology.
	a. he did	b. did	c. he	d. did he
24.	The ability to explain	in complex ideas clea	arly made his lectures	s worth
	a. attend	b. to attend	c. attending	d. attended
25.	He was sure that the	e classification system	nthe discovery	of new particles.
		b. will lead to		

I. Read the text and answer the questions that follow.

Alfred Russel Wallace (1823–1913) was a 19th-century British naturalist who played a major role in the development of evolutionary theory. Although Charles Darwin is more widely remembered for the theory of natural selection, Wallace independently reached similar conclusions. In 1858, he sent Darwin a paper that <u>outlined</u> his ideas, prompting Darwin to publish *On the Origin of Species* the following year.

Wallace's background was very different from Darwin's. He came from a modest family and lacked the financial and social <u>advantages</u> that helped many scientists of the time. In 1848, Wallace travelled to the Amazon to collect animal and plant specimens to support his scientific work. On the way back, however, his ship <u>caught fire</u>, and he lost almost everything he had collected. Although he survived, the loss made it difficult for him to <u>establish</u> a strong scientific reputation early on.

Despite this setback, Wallace continued his research. He later travelled to the Malay Archipelago, where he collected over 125,000 specimens and discovered thousands of new species. These years of fieldwork helped him develop his ideas about how species adapt to their environments and change over time.

While Wallace made significant scientific contributions, his reputation declined during his lifetime. This was partly due to his support for ideas that were considered <u>controversial</u>, such as spiritualism and phrenology. These views led some of his peers to regard him as unscientific, which affected how his work was evaluated.

Unlike Darwin, Wallace never held a <u>formal</u> university position or became part of the scientific elite. He supported himself by writing articles and books for the <u>public</u>, rather than by working at academic institutions. This made it more difficult for him to gain <u>recognition</u> among professional scientists of the era.

In recent years, however, Wallace's work has received more attention. Several biographies have explored his life and career, helping to <u>restore</u> his place in the history of science. Researchers now view Wallace not only as Darwin's colleague but as an <u>independent</u> thinker who contributed important ideas to evolutionary theory.

Wallace's story is one of dedication, field-based science, and persistence despite limited support. While Darwin remains the central figure in most accounts of evolution, Wallace is now being remembered as a key contributor who helped shape one of the most important theories in modern biology. (After: Missing Link https://www.newyorker.com/magazine/2007/02/12/missing-link)

- 1. Why did Wallace send his 1858 paper to Darwin?
 - a. To ask for financial support
 - b. To criticize Darwin's theory
 - c. To share his own discovery of natural selection

d. To apply for a job 2. What made Wallace's background different from Darwin's? a. He studied at Oxford b. He had no formal education c. He came from a less wealthy and privileged family d. He was trained as a doctor 3. Why was the fire on the ship such a major setback for Wallace? a. He lost years of scientific specimens and data b. He became ill c. He lost his passport d. He had to return to the Amazon 4. What was a major reason Wallace was not accepted by the scientific elite? a. He refused to publish his work b. He supported controversial ideas such as spiritualism c. He didn't travel abroad d. He disagreed with Darwin 5. How has Wallace's reputation changed in recent years? a. It has declined further b. It is now mostly forgotten c. It is no longer relevant to modern biology d. It has improved due to new biographies and historical research 6. The underlined word <u>outlined</u> could best be replaced by which of the following: b. summarised c denied d. confused a erased 7. The underlined word advantages could best be replaced by which of the following: b. beliefs a. benefits d. weaknesses c. dangers 8. The underlined phrase caught fire could best be replaced by which of the following: a. was attacked b. ignited c.got lost d. went faster 9. The underlined word establish could best be replaced by which of the following: c build d. remember a. ignore b. damage 10. The underlined word controversial could best be replaced by which of the

c. widely accepted

d. disputed

b. new

following:

a. common

11.	The underlined wor	ed <u>formal</u> could best	be replaced by which	of the following:
	a. part-time	b. official	c. flexible	d. private
12.	The underlined wor	d <u>public</u> could best b	be replaced by which	of the following:
	a. scientists	b. colleagues c	. general population	d. universities
13.	The underlined w	ord recognition cou	ld best be replaced	by which of the
	following:			
	a. acknowledgeme	nt b. conflict	c. agreement	d. instruction
14.			be replaced by which	
			c. re-establish	
15.	The underlined w	ord independent con	uld best be replaced	d by which of the
	following:		-	•
	a. unsure	b.autonomous	c. narrow-minded	d. isolated
	II. Complete the fo	llowing sontoncos		
	11. Complete the jo	moning semences.		
16.			nhave publis	
			c. would have	
17.			in the Amazon	
	a. works	b. working	c. was working	d. had worked
18.	Wallace did not ach	nieve the same recogn	nition Da	arwin.
	a. as	b. than	c. like	d. so
19.		rwin a paper that		
	a. outline	b. outlined	c. has outlined	d. was outline
20.	Wallace's ship caug	ght fire, and he	_ almost everything	he had collected.
	a. loses	b. was losing	c. lost	d. had lost
		d a formal univers	sity position, nor _	part of the
	a. did he become	b. he became	c. does he become	d. has he become
22.	He supported hims	elf by article	es and books for the p	ublic.
	a. writing	b. to write	c. written	d. write
23.	While Darwin rema	ains more famous, W	allace as a ke	y contributor.
	a. was now recogn	ized	b. is now recognize	d
	c. now recognizes		b. is now recognized d. recognized now	
24.			he fire, he did	
	scientific work.			
			c. although	
25.			of his time who	most of their
	research through fie			
	a. conduct	b. conducted	c. conducting	d. was conduct

I. Read the text and answer the questions that follow.

Carl Linnaeus (1707–1778), often called the "father of modern taxonomy," changed our understanding of life on Earth through a simple yet powerful naming system. In his seminal work *Systema Naturae*, he introduced binomial nomenclature – classifying every species with two Latin names (genus and species). This approach brought clarity to an otherwise chaotic "zoo" of living creatures and laid the groundwork for future biological studies, from molecular biology to evolutionary ecology.

Born in rural Sweden, Linnaeus developed his love of plants and animals early on. His father, a parish pastor and amateur gardener, encouraged him to learn plant names. Though a mediocre student at first, he <u>gravitated</u> toward medicine and botany, subjects that shared a classroom at Uppsala University.

At Uppsala, Linnaeus met Peter Artedi, with whom he formed a <u>mission</u>: to catalogue the world's living organisms systematically. They agreed to divide the work – Artedi would handle fish and reptiles, Linnaeus birds and plants. Linnaeus soon gained attention for teaching that flowering plants reproduced sexually – an <u>insight</u> key to his method of classification, based on pollen-producing stamens and seed-bearing pistils.

While working for a wealthy Dutch <u>patron</u>, he authored *Hortus Cliffortianus* and famously grew bananas in northern Europe – a botanical feat that impressed the Swedish royal court. Back in Sweden, he practiced medicine before becoming a full professor at Uppsala, where he continued his influential work and lectured on botany and zoology. His <u>accomplishments</u> earned him titles such as Knight of the Order of the Polar Star and ennoblement.

Despite his contributions, Linnaeus's legacy is complex. He insisted that species were fixed and created by God, <u>resisting</u> ideas like spontaneous generation. Yet he also proposed that humans belong to the animal kingdom, a radical move at the time. His classification of human "varieties" and <u>implicit</u> racial hierarchy remains controversial.

Today, Linnaeus is remembered as a polymath whose work shaped botany, zoology, and ecology. His pioneering system of classification – simple, structured, and systematic – allowed later naturalists, including Darwin, to explore life's diversity with confidence. His story reminds us that scientific breakthroughs are built on both innovation and context, and Linnaeus's life embodies both.

(After: How Carl Linnaeus Set Out to Label All of Life https://www.newyorker.com/magazine/2023/08/21/the-man-who-organized-nature-the-life-of-linnaeus-gunnar-broberg-book-review)

1. What was the key benefit of Linnaeus's binomial system? a. It encouraged artistic naming in biology b. It allowed species to evolve faster c. It organized nature into a universal scientific structure d. It removed Latin from scientific naming 2. What early influence helped shape Linnaeus's interest in plants and animals? a. His university professor's scientific lectures b. His father's encouragement and gardening interests c. His travels to northern Europe d. A childhood job cataloguing species 3. Why was growing bananas significant in Linnaeus's time? a. It symbolized national pride in Sweden b. It proved plants could grow in any soil c. It showed his mastery of botany in a cold climate d. It led to new religious beliefs 4. What made Linnaeus's view on humans controversial? a. He denied human evolution b. He placed humans outside the natural world c. He rejected language as a trait d. He classified humans within the animal kingdom 5. What is the text's final view on Linnaeus's contributions? a. His work is outdated and mostly symbolic b. His system is still fundamental and influential c. He should be studied only as a historical figure d. He had little impact on future scientists 6. The underlined word groundwork could best be replaced by which of the following: a. conclusion b. foundation c. decoration d. revision 7. The underlined word gravitated could best be replaced by which of the following: a. leaned b. disagreed c. struggled d. hesitated 8. The underlined word mission could best be replaced by which of the following: a. argument b. routine c. purpose d. restriction

9. The underlined word <u>insight</u> could best be replaced by which of the following:

c. doubt

d. disagreement

b. understanding

a. confusion

10. The underlined wor	d <u>patron</u> could best b	be replaced by which	of the following:
a. opponent	b. rival	c. bystander	d. benefactor
11. The underlined wo	rd accomplishments	could best be replace	ed by which of the
following:			
a. failures	b. achievements	c. opinions	d. obligations
12. The underlined wor	d resisting could bes	t be replaced by whic	h of the following:
a. questioning	b. accepting	c. opposing	d. proving
13. The underlined wor	_		_
a. hidden	b. deliberate	c. false	d. detailed
14. The underlined we following:	ord <u>confidence</u> cou	ld best be replaced	by which of the
a. certainty	b.hesitation	c. indifference	d. ignorance
15. The underlined wor	d context could best	be replaced by which	of the following:
a.conclusion	b. consequences	c. subject	d. setting
II. Complete the fo	llowing sentences.		
16. If Linnaeus hadn't very different.	introduced his nami	ng system, the taxono	omy today
2	b. had been	c. would be	d. has been
17. His classification m			
		c. was	
18. The university			
		c. which	
19. Linnaeus was one o	of the first scientists _	humans as a	part of the animal
kingdom.			
a. classified	b. classifies	c. to classify	d.classifying
20. Only after his return	n to Sweden	recognition from the	royal court.
a. he gained	b. did he gain	c. he had gained	d. gained he
21. He is credited with	a systematic	approach to classifica	ation.
a. create	b. creating	c. to create	d. created
22. His scientific method	od emphasized both c	classification	observation.
a. or	b. nor	c. and	d. than
23. He became	full professor at Upp	sala University.	
		c. an	d. no article
24. By the time he return			
a. was		c. have	
25. His naming system			
a for	h hetween	c on	dat

I. Read the text and answer the questions that follow.

Charles Robert Darwin (1809–1882) was a renowned British naturalist whose work laid the foundation for modern biology through his theory of evolution by <u>natural selection</u>. Born in Shrewsbury, England, to a well-to-do family of doctors and intellectuals, he initially studied medicine at Edinburgh and then theology and the natural sciences at Cambridge.

At the age of 22, Darwin joined the HMS Beagle (1831–1836) as a naturalist, a journey that shaped his scientific thinking. On the Galápagos Islands, he observed closely related species adapted to different environments, especially finches, which helped him realize that species are not fixed but change over time. He formulated his theory in the late 1830s but waited until 1859 to publish *On the Origin of Species*.

Darwin's theory had five key principles: (1) individuals within a species vary; (2) these variations are <u>inherited</u>; and (3) traits that improve survival and reproduction become more common through "natural selection"; (4) over generations, more offspring inherit useful traits, and (5) these traits spread, helping the whole species adapt better to its environment. He illustrated natural selection using <u>analogies</u> such as breeders choosing traits in pigeons, and applied a Malthusian framework – population growth pressures lead to a "struggle for existence" that favors adaptive traits.

On the Origin of Species was controversial, challenging religious and cultural beliefs about human uniqueness. Darwin himself remained cautious, influenced by his religious upbringing and health issues. He spent most of his life at Down House in Kent, publishing further works such as *The Descent of Man* (1871), where he addressed human evolution and sexual selection, and *The Expression of the Emotions in Man and Animals* (1872), a pioneering study in evolutionary psychology.

Although he lacked knowledge of genetics, Darwin's ideas found later <u>validation</u> in Mendelian inheritance and modern natural sciences. Natural selection is now accepted as the primary mechanism of evolution and remains central to the life sciences.

While some critics applied his work to justify eugenics and "Social Darwinism," <u>misrepresenting</u> his <u>cautious</u> writings, Darwin himself was an abolitionist and reevaluated his own views, reflecting thoughtful and evolving beliefs rather than ideological extremes.

Darwin is regarded as one of history's most influential scientists. His systematic methods, grounded in <u>meticulous</u> observation, careful reasoning, and extensive correspondence, made him central to the scientific revolution of the 19th century. His legacy persists in his vision of life as an evolving process shaped by variation and selection, changing our understanding of ourselves and the natural world.

(After: Charles Darwin: Biography, Theories, Contributions https://www.verywellmind.com/charles-darwin-biography-theories-contributions-7557154)

- 1. Why was Darwin's voyage on the HMS Beagle important? a. It helped him establish marine laws b. It inspired his theory by exposing him to biodiversity c. It allowed him to map South America d. It convinced him to abandon science 2. What key idea did Darwin develop from observing finches? a. All species are genetically identical b. Animals change rapidly due to weather c. Similar species adapt differently based on environment d. Natural selection doesn't affect birds 3. What delayed Darwin's publication of On the Origin of Species? a. Religious hesitation and health concerns b. Scientific disagreements c. Financial problems d. Pressure from universities 4. What made The Descent of Man different from On the Origin of Species? a. It focused on plant evolution b. It applied evolution ideas to humans c. It avoided controversial topics d. It rejected natural selection 5. How does the text describe Darwin's overall influence? a. Temporary and political b. Limited by his lack of genetics knowledge c. Overrated and outdated d. Foundational to biology and scientific thought 6. The underlined phrase <u>natural selection</u> could best be replaced by which of the following: a. chance breeding b. careful planting
- c. survival of the fittest d. animal hunting

 7. The underlined word inherited could best be replaced by which of the following:

 a. created b. passed on c. erased d. shared randomly

 8. The underlined word analogies could best be replaced by which of the following:

 a. metaphors b. emotions c. translations d. comparisons

9. The underlined wor following:	rd challenging coul	ld best be replaced	by which of the
· ·	h eacy to evaluin	c. popular d	unralated
10. The underlined phra	-		
following:	isc <u>cuitural beliefs</u> c	outd best be replace	d by which of the
•	3	b. mathematical the	ories
a. scientific methodsc. traditional worldv	viewe	d. ecological system	
11. The underlined phr		• •	
following:	ase <u>upornignig</u> cou	nd best be replaced	i by which of the
a. emotional control		h roiging	
		b. raising	i.
c. genetics	nd validation apple	d. human relationsh	*
12. The underlined wo	rd <u>vandation</u> could	i best be replaced	by which of the
following:	1		11
		c. rewriting	-
13. The underlined wor	a misrepresenting c	ould best be replace	a by which of the
following:	1	. 1: .1	1 .
a. distorting			
14. The underlined word		= -	_
	•	c. conservative	
15. The underlined wo	rd <u>meticulous</u> coul	d best be replaced	by which of the
following:			
a. careless	b.fast-paced	c. experimental	d. precise
II. Complete the foll	lowing sentences.		
16. By the time Darwin	published On the C	Origin of Species, he	his theory
decades earlier.			
a. was formulating	b. formulated	c. had formulated	d. formulates
17. Darwin's ideas			
a. have been	b. were being	c. has been	d. are
18. Darwin was deeply i			
a. from		c. with	
19. Darwin may			
		c. have received	
20. Darwin noted that sp	oecies over t	ime.	_
		c. had changed	d. will change
21. He is credited with _			
		c. creates	
22. Natural selection exp			
		c. are passed	

23. His journey on the HMS Beagle		when he was 22.	
a. bega	n b. had begun	c. was beginning	d. begins
24. Darwin	s writings show that scien	nce is based on evidence, _	belief.
a. and	b. not	c. or	d. also
25. Darwin	published his theory in	On the Origin of Species	, which laid
foundat	ion for modern biology.		
аа	h an	c no article	d the

I. Read the text and answer the questions that follow.

Isaac Newton (1643–1727) stands as one of history's most significant scientists. While best known for his law of gravity, he also deeply <u>influenced</u> physics, mathematics, astronomy, chemistry, and even monetary reform. His life and work shaped the Enlightenment and laid the groundwork for our scientific age.

Newton was born prematurely on January 4, 1643, in Woolsthorpe, England. His father died before his birth, and his mother remarried and left young Newton in the care of his grandparents. Despite a challenging childhood, Newton showed a strong aptitude for mechanics and mathematics. He was fascinated by building clocks, windmills, and sundials – early signs of his inventive mind.

In 1661, Newton entered Trinity College, Cambridge. Though he initially followed traditional Aristotelian teachings, he soon found them inadequate for explaining natural phenomena. He explored new ideas by reading works by thinkers like René Descartes and Galileo Galilei. In 1665, Cambridge temporarily closed due to the Bubonic Plague, and Newton returned home. During this time – often referred to as his "Annus Mirabilis" or "Year of Wonders" – he made extraordinary advances: formulating the beginnings of calculus, experimenting with optics, and conceiving the laws of motion and universal gravitation. Legend recounts how a falling apple inspired his thoughts on gravity, though Newton himself noted the tale <u>emerged</u> later and may be more symbolic than literal.

Newton's first public success came in 1668, when he built a reflective telescope that used mirrors rather than lenses. This design <u>eliminated</u> issues found in traditional telescopes and produced clearer observations. Admired by the Royal Society, Newton shared his optical experiments through notes that eventually became the book *Opticks*.

In 1684, astronomer Edmond Halley <u>prompted</u> Newton to formalize his ideas. Three years later, Newton published *Philosophiæ Naturalis Principia Mathematica* – known as the *Principia*. This <u>seminal</u> work included his three laws of motion and the universal law of gravitation, explaining both falling apples and orbiting planets. These laws described motion in <u>precise</u> mathematical language and remained the foundation of physics until Einstein's theories emerged centuries later.

Newton's influence expanded beyond science. In 1696, he became the Warden of the Royal Mint and later its Master. He led a campaign to stop widespread coin counterfeiting, personally tracking criminals and reforming England's monetary system. By 1703, he was elected the President of the Royal Society, the position he held until his death in 1727. In this role, he secured his scientific authority and shaped scholarly standards.

Despite his extraordinary achievements, Newton had a passionate and sometimes bitter nature. He engaged in long disputes over the invention of calculus

with Gottfried Leibniz, and had <u>tense</u> relations with other scientists like Robert Hooke. Newton also <u>delved into</u> alchemy and biblical prophecy – now seen as mystical but which reflected the intellectual diversity and uncertainty of his era.

Newton was knighted in 1705 and died in March 1727. He was buried in Westminster Abbey, among Britain's greatest. His legacy <u>endures</u>: his laws still guide everyday technology, his mathematical <u>frameworks</u> underpin modern engineering, and his methodology – combining mathematical theory with careful experiment – remains central to science.

In summary, Newton's life exemplifies the unity of observation, mathematics, and experimentation. His innovations in motion, optics, and gravitational theory helped build the Scientific Revolution, and his influence continues across every field of modern science (After: Isaac Newton https://www.history.com/articles/isaac-newton)

- 1. What period of Newton's life is referred to as the "Annus Mirabilis"?
 - a. His early years at Cambridge
 - b. The time he spent reforming the Royal Mint
 - c. His stay at home during the plague
 - d. His presidency at the Royal Society
- 2. What was revolutionary about Newton's telescope design?
 - a. It could detect gravity
 - b. It used mirrors instead of lenses
 - c. It measured motion mathematically
 - d. It captured sound waves
- 3. What motivated Newton to publish Principia?
 - a. A debate with Leibniz
 - b. A request from the king
 - c. Encouragement from Edmond Halley
 - d. Financial necessity
- 4. Why was Newton's time at the Royal Mint significant?
 - a. He introduced paper money
 - b. He prevented a banking crisis
 - c. He reduced inflation
 - d. He helped eliminate counterfeit coins
- 5. How did Newton influence the scientific community as the president of the Royal Society?
 - a. By shaping scholarly norms and supporting scientific inquiry
 - b. By sponsoring architectural projects

	d. By banning f	oreign scienti	sts				
6.	The underlined following:	word influe	nced could	l best be	replaced	by which	of the
	a. hindered	b. ignore	d	c. guided		d. separate	ed
7.	The underlined following:	word emer	ged could	best be	replaced	by which	of the
	a. disappeared	b. arose		c. failed		d. removed	d
8.	The underlined following:	word elimin	nated could	l best be	replaced	by which	of the
	a. reduced	b. caused		c. expose	d	d. avoided	
9.	The underlined following:	word <u>prom</u>	pted could	best be	replaced	by which	of the
	a. discouraged	b. remino	led	c. encoura	aged	d. interrup	ted
10.	The underlined v	word seminal	could best b	e replace	d by which	n of the foll	owing:
	a. brief	b. repetit	ive	c. outdate	d	d. influent	ial
11.	The underlined v	word <u>precise</u> o	could best b	e replaced	l by which	of the follo	wing:
	a. vague	b. exact		c. risky		d. visual	
12.	The underlined v	word <u>tense</u> co	uld best be	replaced b	y which o	f the follow	ing:
	a. relaxed	b. timely		c. strained	1	d. playful	
13.	The underlined	word delved	<u>l into</u> coul	d best be	e replaced	by which	of the
	following:						
	a. explored			_			
14.	The underlined v			_	-		_
	a. fades	-				-	
15.	The underlined	word frame	works coul	d best be	e replaced	by which	of the
	following:						
	a. decorations	b. surface	es	c. firewor	ks	d. structure	es
	II. Complete the	e following se	ntences.				
16.	Newton	many	of his ear	ly experii	ments dur	ing the un	iversity
	closure.						
	a. conducting						
17.	Newton's theori	es explained	how planet	s and app	les	by th	ne same
	laws.						
	a. govern						
18.	Newton worked						eeded.
	a. but	b. so		c. despite		d. unless	

c. By standardizing religious practices

19.	He helped es	tablish laws of motion th	hat are still	taught.
	a. widely	b. wide	c. widened	d. width
20.	Newton's ap	proach to experimenta	tion,	on careful observation,
	changed scie			
	a. base	b. basing	c. based	d. bases
21.	Had Newton	not developed his law	s of motion, mode	ern physics
	very differen	t today.		
	a. would be	b. was	c. has been	d. would have been
22.	·	all his fame, Newton rea	mained a private ar	nd reclusive figure.
	a. because	b. despite	c.although	d. even
23.	The telescop	e Newton built was sup	erior to earlier mod	dels its clarity and
	precision.			
	a. of	b. in	c. for	d. to
24.	·	his theories were revo	olutionary, some of	f his views on alchemy
	were conside	ered outdated.		
	a. however	b. even though	c. in spite of	d. as
25.	The publica	tion of Principia was	one of	events in scientific
	history.			
	a. the most s	significant significant	b. more signif	icant
	c. the more	significant	d. most signifi	icant

I. Read the text and answer the questions that follow.

Sir Chandrasekhara Venkata Raman (1888–1970) is celebrated worldwide for his discovery of the Raman Effect, a breakthrough that earned him the Nobel Prize in Physics in 1930. However, Raman was not only a pioneering physicist but also a gifted communicator who bridged the gap between advanced scientific research and public understanding.

The story of the Raman Effect began on February 28, 1928, when Raman and his student K. S. Krishnan noticed an unusual scattering of light as it passed through liquids. Instead of observing simple fluorescence, they detected a new kind of modified scattering that offered deeper insights into how light interacts with matter. This discovery fundamentally changed the study of optics and quantum physics. Yet what made the finding especially powerful was Raman's ability to present it in clear, precise, and <u>persuasive</u> language, allowing colleagues and non-specialists to grasp its significance. His explanation ensured that the phenomenon quickly gained <u>recognition</u> in the international scientific community.

Raman's communication skills extended beyond technical papers. While his scientific writing was rigorous and <u>concise</u>, his talks to broader audiences displayed warmth and accessibility. He had the rare ability to simplify complex ideas without distorting them, a skill that made his lectures <u>memorable</u> for students, researchers, and <u>lay audiences</u>. In this way, Raman embodied the dual role of scientist and teacher: he pushed the boundaries of physics while also nurturing intellectual curiosity in others.

As a mentor, Raman fostered independent thinking. He encouraged his students to pursue careful experimentation and to question <u>assumptions</u>, while still providing guidance when needed. His collaboration with Krishnan, for instance, was not merely that of senior and junior researcher; it was a partnership grounded in mutual respect and shared intellectual exploration. This balance of <u>rigour</u> and openness characterized his approach to both science and communication.

Thus, Raman's life reminds us that research does not end in the laboratory – it continues in the lecture hall, the written page, and the public imagination. His story remains a model for today's researchers, showing how scientific <u>brilliance</u> can be magnified through the art of communication (After: C.V. Raman as a Science Communicator: A Historical Perspective https://arxiv.org/abs/2403.04773).

- 1. What was C. V. Raman awarded the Nobel Prize for?
 - a. His theory of relativity
 - b. His discovery of the Raman Effect
 - c. His invention of the microscope
 - d. His work on cosmic radiation

	a. It was easily replicated and explaineb. It was supported by strong politicalc. It aligned with existing theories withd. It was kept secret for many years	influence	
3.	What aspect of Raman's career distingua. His refusal to publish in journals b. His talent for communicating complete. His complete rejection of collaborated. His work in financial reforms	ex ideas simply	other scientists?
4.	What was notable about his partnership a. It was based on competition b. It limited Krishnan's independence c. It led to no meaningful results d. It reflected mentorship and respect	o with K. S. Krishnan?	
5.	Why does the text emphasize Raman's s a. To show how he promoted pseudosc b. To criticize his lack of scientific rigo c. To demonstrate his ability to inspire d. To contrast him with European scien	ience our wide audiences	ublic speaking?
6.	The underlined word gifted could best l	= -	_
7.	a. talented b. ordinary The phrase bridged the gap could best bear a. separated groups c. ignored problems	J	ences
8.	The underlined word persuasive coufollowing:		
9.	a. convincing b. doubtful The underlined word recognition confollowing:		
	a. refusal b. doubt The underlined word <u>concise</u> could bes a. clear and brief b. lengthy The underlined word <u>memorable</u> confollowing:	t be replaced by which c. confusing	d. vague
	following: a. forgettable b. ordinary	c. remarkable	d. irrelevant

2. Why was Raman's discovery accepted so rapidly by the scientific community?

12.	The phrase lay audio	ences could best be r	replaced by which of	the following:
			b. technical experts	_
	c. university profes	sors	d. general public	
13.			uld best be replaced	l by which of the
	•	b. instruments	c. traditions	d. beliefs
14.			e replaced by which	
		_	c. carelessness	_
15.	The underlined wo following:	ord <u>brilliance</u> could	d best be replaced	by which of the
	- C	b. intelligence and t	talent c. weakness	d. hesitation
	II. Complete the fol	llowing sentences.		
16.		was recognized,	he was still under	restimated early in
	his career.			
			c. but	
17.		learer explanations,	his discovery might	not have spread so
	quickly.			
	_	_	c. gives	
18.			light through	
			c. was passing	
19.			experiments that cha	
			c. was conducting	
	only in journals.		e shared the	
	a. with	b. to	c. in	d. by
21.	The Nobel Prize in 1	Physics to R	aman in 1930.	•
			c. had awarded	d. was awarded
22.	Raman emphasized	that clarity of exp	ression is just as im	portant as
	experimentation.			
	a. accurate	b. accuracy	c. accurately	d. more accurate
23.			crowds, was admired	
			c. that	d. which
24.			understand	difficult ideas.
	a. can		c. could	
25.	His vision was to		art of everyday life,	-
	academic subject.	-		
	a. not	b. and	c.or	d. but not

I. Read the text and answer the questions that follow.

James Chadwick (1891–1974) is best known for his 1932 discovery of the neutron, a breakthrough that reshaped atomic physics. However, less often discussed are his early insights into nuclear forces and his contributions to establishing modern subatomic theory.

Born in Cheshire, England, Chadwick was drawn to physics from a young age. After studying at Manchester, he worked under Ernest Rutherford at the Cavendish Laboratory in Cambridge. There, he developed a reputation for <u>keen</u> experimental skills and his readiness to follow the evidence – even when surprising results appeared.

Chadwick's greatest achievement was identifying the neutron. By measuring the radiation emitted from beryllium and <u>interpreting</u> its penetrating power and lack of electrical charge, he concluded that a <u>neutral</u> particle must exist within the nucleus. This discovery explained previously confusing results in atomic mass and charge calculations. For this, he received the 1935 Nobel Prize in Physics, yet his work went far beyond.

Early in his career, Chadwick proposed the existence of what are now known as the weak and strong nuclear forces, long before they were formally defined. He noted that certain radioactive processes required forces beyond electromagnetism and gravity – insights <u>foundational</u> to particle physics decades ahead of their time.

Chadwick's experimental rigour is emphasized. For example, his precise measurement of the neutron's mass and the <u>careful</u> calibration of instruments laid the groundwork for <u>later</u> physicists. He was not content to hypothesize; he tested, measured, and verified. In contrast to theorists, Chadwick maintained a disciplined, <u>empirical</u> mindset.

Chadwick's professional life was marked by <u>integrity</u> and quiet dedication. During both World Wars, he made substantial contributions to Britain's scientific efforts. After the war, he served as the <u>Master</u> of Gonville and Caius College, Cambridge, guiding scientific education at a key institution.

In summary, Chadwick's career reflects a blend of experimental genius and intellectual foresight. He emerges as a foundational figure who shaped the direction of physics in subtle but <u>profound</u> ways (After: James Chadwick: ahead of his time https://arxiv.org/abs/2007.06926).

- 1. How is Chadwick's discovery of the neutron described in the text?
 - a. A minor contribution
 - b. His only contribution
 - c. His most famous, but not only contribution
 - d. A theoretical prediction

2.	 Why were Chadwick's early notes on nuclear forces significant? a. They were published much later b. They anticipated future discoveries c. They focused on electromagnetic forces d. They were ignored by Rutherford
3.	How did Chadwick differ from theorists, according to the summary? a. He focused on theory instead of experiment b. He tested his hypotheses with precision c. He avoided measurements d. He worked alone without collaboration
4.	What does the article suggest about Chadwick's legacy? a. He is less important than his name suggests b. He was primarily a teacher c. He did not contribute during wartime d. He is undervalued for his broader insights
5.	How did Chadwick contribute during the World Wars? a. He supported Britain's scientific efforts b. He refused to participate c. He was a battlefield medic d. He left academia
	The underlined word <u>keen</u> could best be replaced by which of the following: a. weak b. strong c. limited d. precisely The underlined word <u>interpreting</u> could best be replaced by which of the following:
	a. ignoring b. measuring c. explaining d. recording The underlined word <u>neutral</u> could best be replaced by which of the following: a. charged b. uncharged c. shining d. moving The underlined word <u>foundational</u> could best be replaced by which of the following:
	a. decorative b. temporary c. essential d. secondary The underlined word <u>careful</u> could best be replaced by which of the following: a. rough b.precise c. casual d.careless The underlined word <u>later</u> could best be replaced by which of the following: a. former b. previous c. future d. present

12.	following:	word empirical co	uld best be replace	ed by which of the						
	a. chaotic	b. ordered	c. inconsistent	d. abstract						
13.	. The underlined v		est be replaced by wh	nich of the following:						
14.	The underlined v	vord <u>Master</u> could be b.janitor	st be replaced by whi	ch of the following:						
15.				ed by which of the						
	a. shallow	b. deep	c. ordinary	d. careless						
	II. Complete the	following sentences.								
16.	. Chadwick,	work anticipa	ted later discoveries,	is often overlooked.						
		b. who								
17.	. If Chadwick had	not measured radiation	on, he th	ne neutron.						
	a. would not have	ve detected		b. will not detect						
	c. had not detect	ted	d. would not dete	d. would not detect						
18	. His experiments	in Camb	oridge under Rutherfo	idge under Rutherford.						
	a. conducted		b. were conducted							
	c. were conducting	ng	d. have conducted	d						
19		the Nobel Prize in 19								
		b. was won		d. winning						
20.	. Chadwick	developed	insights years before	ore formal theories						
	appeared.	-								
	a. are	b. have	c. were	d. had						
21.	. He worked	empirical evi	dence instead of theo	ry.						
		b. with								
22.				ibutions overlooked.						
	a. had		c. has							
23.	. Chadwick's repu	tation is largely								
		b. separate from								
24.	Long before nuppotential signific		lly understood, Chao	dwick their						
	a. recognized	b. recognizes	c. recognizing	d. had recognized						
25.				the position of						
		nville and Caius Coll								
	a. takes on	b. taking on	c. took on	d. taken on						

I. Read the text and answer the questions that follow.

Richard Phillips Feynman (1918–1988) was one of the 20th century's most <u>influential</u> and charismatic physicists. After earning his PhD at Princeton in 1942, he joined the Manhattan Project before becoming a <u>prominent</u> theorist at Cornell and later at Caltech, where he spent nearly four decades.

Feynman revolutionised physics through his path-integral formulation of quantum mechanics and the introduction of Feynman diagrams. These pictorial tools transformed complex calculations in quantum electrodynamics (QED) into intuitive visual representations and became standard across particle and condensed-matter physics. His approach emphasized clarity in reasoning – he believed that truly understanding physics meant being able to "show how the solution unravels" step by step. His career included work on QED, liquid helium, turbulence, weak force theory, quantum computing, and quantum gravity. In each area, he made innovative contributions marked by intellectual boldness and technical precision.

Feynman was also a gifted teacher. His *Feynman Lectures on Physics*, delivered in 1961–62 at Caltech, remain widely used today. His teaching style combined informal language, concrete examples, and a deep respect for <u>rigorous</u> thought. He challenged <u>authority</u>: "Science is the belief in the ignorance of experts," he famously remarked. His Nobel Prize came in 1965, awarded for his work in QED, particularly the development of Feynman diagrams. In his Nobel banquet speech, he spoke not as a remote <u>academic</u>, but as someone who treasured the joy of discovery and its shared happiness.

Feynman's personality was as unique as his physics. Raised in Queens, New York, by modest parents, he retained an informal and playful <u>demeanour</u>. He often spoke freely against pretense in science, embodying a "boy-from-the-countryside" image. He interwove humor and cultural flair into academic life – playing bongo drums, cracking jokes, and enjoying life's simple pleasures – even as he <u>pushed intellectual boundaries</u>.

Thus, Feynman's legacy is <u>twofold</u>: he changed how physics is done through powerful new tools and he changed how it is taught and perceived – with warmth and clarity. His methods and philosophies continue to inspire scientists worldwide (*After: The Science and Legacy of Richard Phillips Feynman https://arxiv.org/abs/1810.07409*)

- 1. What is Feynman best known for?
 - a. Teaching philosophy
 - b. Creating Feynman diagrams and path-integrals
 - c. His work on general relativity
 - d. His leadership in World War II

	b. They helped visualize and simplify complex calculations
	c. They were easier to draw than write
	d. They were only for particle physics
3.	What attitude did Feynman take towards scientific authority?
	a. He fully respected expert consensus
	b. He believed experts were always wrong
	c. He valued questioning expert opinions
	d. He avoided disagreeing with senior scientists
4.	How did Feynman's personality affect his teaching style?
	a. He used formal and academic language
	b. He avoided humor and casual examples
	c. He made science accessible and engaging
	d. He focused solely on theoretical rigour
5.	What dual impact did Feynman have on physics? a. He changed both scientific methodology and science culture b. He invented two separate theories c. He worked only on quantum theory and education d. He focused solely on popular writing
6.	The underlined word <u>influential</u> could best be replaced by which of the following:
	a. minimal b.impactful c. written d. infrequent
7.	The underlined word <u>prominent</u> could best be replaced by:
	a. unknown b. eminent c. ordinary d. inexperienced
8.	The underlined word <u>transformed</u> could best be replaced by which of the following:
	a. delayed b. revolutionized c. summarized d. complicated
9.	The underlined word <u>standard</u> could best be replaced by which of the following: a. unpopular b. obsolete c. widely accepted d. temporary
10	The underlined word <u>rigorous</u> could best be replaced by which of the following
10.	a. careless b.superficial c. abstract d. thorough
11.	The underlined word <u>authority</u> could best be replaced by which of the
	following:
	a. expert opinion b.government c. classroom rules d. religion

2. Why did Feynman believe diagrams were important?

a. They replaced all mathematical formulas

	underlined owing:	word acade	mic could	d best	be	replaced	by	which	of	the
	oractitioner	h hureau	ıcrat	c scho	ələr		d t	eacher		
_	underlined								of	the
	owing:	word demed	<u>inour</u> cou	ia oest	00	теріасса	Оy	WIIICII	O1	tiic
a. aj	ppearance	b. behavi	or	c. wea	lth		d. a	attitude		
14. The	underlined p	hrase <u>pushed</u>	intellectua	al boun	<u>dari</u> e	es could b	est l	oe repla	ced	by
a. fo	ollowed tradit	tional ideas		b. mer	nori	zed know	n fa	cts		
c. av	voided difficu	alt concepts		d. exp	lore	d new ide	as			
15. The	underlined w	vord <u>twofold</u>	could best	be repl	acec	d by:				
a. si	ngle	b. double		c. com	ple	X	d. i	nsignif	ican	t
II. O	Complete the	following sea	ntences.							
16. By	the time Fey	nman joined	the Manh	attan Pı	roje	ct, he		his	PhI) at
Prin	ceton.									
a. ha	ad completed	b. comple	eted	c. was	con	npleting	d. ł	nas com	plet	ted
17. Fey	nman's metho	ods	across	many s	ubfi	elds.				
a. s	pread	b. spreads	5	c. had	spre	ead	d. v	were sp	read	ling
18. He	used simple e	xamples	e	xplain o	com	plex ideas	5.			
a.sc)	b. for		c. in o	rder		d. t	0		
19. To	follow Feynn	nan's reasoni	ing, studer	nts		pay	atte	ention t	o ev	ery
step	in his explan	nations.								
a. m	ay	b. must		c. mig	ht		d. c	could		
20. Des	pite his inform	mal style, he		scier	ntific	e rigour.				
	pholds							ıpholdi	ng	
21. Not	only did he to	each,	he al	so cond	duct	ed researc	h.			
a. b	out	b. and		c. but	also		d. a	also		
22. He	was both a br	illiant theoris	t	a g	iftec	d teacher.				
a. c							d. t	out		
23. His	approach place	ced strong en	nphasis	cla	rity	and step-l	y-si	tep reas	oniı	ng.
a. v	vith	b. in		c. on			d. t	у		
24. Fey	nman's lectur	res combined	informal	langua	ge, o	concrete e	xam	iples, ai	nd d	leep
	for 1	rigorous thou	ght.							
a. r	espected	b. respect		c. resp	ecti	ng	d. r	espectf	ul	
25. Fey	nman's Nobe	l lecture	_ rememb	ered fo	r its	humor ar	ıd hı	ıman w	arm	ıth.
a. i	3	b. has		c. wer	e		d. ł	be		

I. Read the text and answer the questions that follow.

Steven Weinberg (1933–2021) was one of the most <u>distinguished</u> theoretical physicists of the late 20th century. Born in New York City to immigrant parents, he earned his bachelor's degree at Cornell and his PhD in 1957 at Princeton. He later held positions at Columbia, UC Berkeley, MIT, Harvard, and the University of Texas.

In 1979, Weinberg received the Nobel Prize for <u>unifying</u> electromagnetic and weak nuclear forces – a monumental step in particle physics. Working together with Glashow and Salam, he placed electroweak theory alongside Newton's and Maxwell's as one of the great unification breakthroughs in science.

However, his impact extended far beyond the Nobel-winning achievement. Weinberg introduced the concept of effective field theory, showing that scientific laws provide approximate descriptions at certain energy scales and may break down outside them. This philosophical shift changed how physicists think about the limits and structure of scientific theories. He also made major theoretical contributions to quantum chromodynamics – the theory of strong nuclear interactions – helping to integrate it with the electroweak framework and shaping the Standard Model of particle physics. His work extended into early-universe cosmology, exploring how fundamental particles and forces influence cosmic evolution.

Weinberg was not only a researcher – he was a <u>prolific</u> educator and author. He wrote eight influential textbooks in theoretical physics, each marked by <u>clarity</u> and comprehensiveness. His popular science works, like *The First Three Minutes*, made <u>cutting-edge science</u> accessible to broader audiences. Beyond formal writing, he contributed essays on science, society, <u>justice</u>, critical thinking, and the relationship between science and religion – reflecting his belief that scientists must engage with wider cultural and ethical issues.

Steven Weinberg held prestigious academic positions and served on national science boards and committees, playing a public role in scientific discourse. His career spanned over six <u>decades</u> of research, leadership in science writing, and institutional influence. Nowadays his ideas continue to shape research in particle physics and cosmology, confirming him as a <u>towering</u> figure in modern science

(After: Steven Weinberg: A Scientific Life https://arxiv.org/abs/2502.10979).

- 1. What major scientific unification is Weinberg credited with?
 - a. Electroweak interaction
 - b. Quantum gravity
 - c. General relativity
 - d. Thermodynamics

2.	a. Quantum uncertainty b. Effective field theory c. Divergence theory	scale?
	d. Electroweak symmetry	
3.	3. How did Weinberg influence theoretical physics' structure?	
	a. By rejecting all prior models	
	b. By making laws exact at every scale	
	c. By showing theories are approximate	
	d. By focusing solely on mathematics	
4.	4. Which field did Weinberg NOT significantly contribute to?	
	a. Particle physics	
	b. Cosmology	
	c. Biochemistry	
	d. Science education	
5.	5. What broader roles did Weinberg embrace beyond research?	
	a. Political campaigning	
	b. Institutional leadership and public discourse	
	c. Sports narration	
	d. Private business	
6	6 The underlined word distinguished could best be replaced by	w which of the
0.	6. The underlined word <u>distinguished</u> could best be replaced b following:	by which of the
	a. obscure b. eminent c. inexperienced d.	mediocre
7.	7. The underlined word <u>unifying</u> could best be replaced by which of	
, .	a. separating b. blending c. ignoring d.	
8.	8. The underlined word approximate could best be replaced b	_
	following:	•
	a. complete b. general c. rough d.	perfect
9.	9. The underlined word contributions could best be replaced b	y which of the
	following:	
	a. donations b. obstacles c. mistakes d.	innovations
10	10. The underlined word <u>prolific</u> could best be replaced by which of	the following:
	1	hesitant
11	11. The underlined word <u>clarity</u> could best be replaced by which of	_
1.0	a. opacity b. length c. complexity d.	
12	12. The underlined phrase <u>cutting-edge science</u> could best be repla	cea by which of

	the following:			
	a. outdated research		b. advanced knowle	edge
	c. basic facts		d. simple experimen	nts
13.	The underlined wor	d <u>justice</u> could best b	e replaced by which	of the following:
	a. lawful matters			
	c. financial markets	\mathbf{S}	b. social fairnessd. scientific formula	as
14.	The underlined wor	d <u>decade</u> could best b		
	a. 10 years	b.10 days	c.century	d.generation
15.		ord towering could		
	following:			
	a. minor	b. insignificant	c. prominent	d. declining
	II. Complete the fol	llowing sentences.		
16.		that effe	ective field theory co	uld describe nature
	within a given energ			
		b. an		
17.		narked that scientific		
		b. were		
18.		as one of		
	_	b. regards	_	
19.	Such theories	break down when	applied outside their	r intended scales.
		b. may		_
20.	In 1979, Weinberg	the No	obel Prize, which co	nfirmed his global
	reputation.			
	a. had received	b. receives	c. received	d. was receiving
21.	Only after winning	the Nobel Prize	worldwide f	ame.
	a. he achieved	b. did he achieve	c. had he achieve d	. was he achieving
22.	Weinberg wrote in	fluential essays,	his convic	tion that scientists
	must engage with so	ociety.		
	a. reflect	b. reflected	c. reflecting	d. reflects
23.	He predicted that	the Standard Model	the fou	indation of particle
	physics for decades.			
	a. has remained	b.will remain	c. remained	d. would remain
24.	By the end of his ca	reer, Weinberg's boo	ks translated into	o many languages.
	a. were	b.will be	c. are	d. had been
25.	Weinberg's writings	help readers think al	bout science	culture.
	a. compared to	b. beside	c. within	d. against

I. Read the text and answer the questions that follow.

Lise Meitner (1878–1968) was a physicist whose work fundamentally advanced our understanding of nuclear fission, although she was frequently <u>underestimated</u> by her contemporaries. Born into a Jewish family in Vienna at a time of strict gender roles, she <u>overcame</u> significant barriers to become the first woman admitted to the University of Vienna's physics department. Later, she joined Otto Hahn's research team in Berlin, contributing significantly to early nuclear physics.

Meitner's path was shaped by both her work and the turbulent era. During World War I, she served as a radiology volunteer for wounded soldiers, demonstrating not only scientific <u>dedication</u> but also a strong social conscience. Her long collaboration with Hahn produced many discoveries, but in 1934, they began researching neutron bombardment of uranium, leading to the misinterpretation of transuranic elements. Meitner recognized the true outcome – fission – a discovery that reshaped physics. Despite being central to the discovery, Meitner did not share the 1945 Nobel Prize with Hahn, <u>sparking</u> controversy around recognition and gender bias in science.

Her professional difficulties deepened in 1933, when the Nazis <u>revoked</u> her academic <u>appointment</u> because of her Jewish heritage and their moral hostility toward her. Meitner escaped to Sweden in 1938, and later settled in Stockholm, continuing her research despite financial and institutional limitations.

Historians emphasize Meitner's personal <u>integrity</u>: she avoided the title of "mother of the atomic bomb," remained skeptical about military science, and criticized the direction of research during wartime. Despite <u>adversity</u>, she continued publishing influential work in radiochemistry and nuclear physics well into later life. Her commitment to ethical science and her opposition to both misogyny and anti-Semitism are described as key components of her <u>enduring legacy</u> (After: Lise Meitner and the Dawn of the Nuclear Age https://arxiv.org/abs/physics/0007009).

- 1. Which aspect of Meitner's biography does the summary emphasise?
 - a. Her mathematical discoveries only
 - b. Her ethics, science, and social life together
 - c. Her career in Sweden
 - d. Her focus on military applications
- 2. What major scientific discovery is Meitner credited with?
 - a. Neutron isolation
 - b. Quantum mechanics
 - c. Nuclear fission

d. Electron theory

a. She was not a physicist

3. Why did Meitner not receive the Nobel Prize?

	b. She died before the award
	c. Gender bias and Nazi exclusion
	d. She refused the prize
4.	What role did Meitner play during World War I? a. Military strategist b. Radiology volunteer for the wounded c. Spy for Austria d. Nuclear weapons designer
5.	Which aspect of Meitner's life is emphasized as integral to her legacy? a. Her administrative leadership in Stockholm b. Her work on the atomic bomb c. Her collaborations with European universities d. Her scientific responsibility and opposition to prejudice
6.	The underlined word <u>underestimated</u> could best be replaced by which of the following:
7.	a. undervalued b. admired c. celebrated d. promoted The underlined word overcame could best be replaced by which of the following:
8.	a. ignored b. succeeded despite c. reinforced d. exaggerated The underlined word <u>dedication</u> could best be replaced by which of the following:
9.	a. indifference b. carelessness c. apathy d. commitment The underlined word sparking could best be replaced by which of the following:
10	a. igniting b. preventing c. avoiding d. silencing The underlined word <u>revoked</u> could best be replaced by which of the following: a. ignored b. granted c.cancelled d. postponed
11.	The underlined word appointment could best be replaced by which of the following:
10	a. duty b. position c. meeting d. discovery
12	The underlined word <u>integrity</u> could best be replaced by which of the following: a. honesty b. weakness c. dishonesty d. silence

13.	The underlined following:	word <u>adversity</u>	could be	st be r	replaced	by which	of the
	a. hardship	b. support	c. c	onfiden	ce	d. advertis	sement
14.	The underlined						
	following:				· F	- J	
	a. forgotten	b. temporary	c. 1	asting		d. fragile	
15.	The underlined wo)wing:
10.	a. award		-		•		_
		0. 1 . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.				0.00110110	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	II. Complete the f	following sentenc	ees.				
16.	The story reminds						
	a. did		c. d			_	
17.	Her discovery of	nuclear fission	is consi	dered of	ne of th	e most sig	gnificant
	scientific advance	s of the 20th cent	ury,		it was in	itially over	looked.
	a. although	b. because	c. s	0		d. unless	
18.	Meitner continued	l her research in	Stockholn	n despit	e financi	al and inst	itutional
	limitations, but sh						rer.
	a. would receive		b. r	eceived			
	c. was receiving		d. v	vould ha	ive receiv	ved	
19.	The Nobel Prize i	n 1945	only 1	o Otto l	Hahn, sp	arking con	troversy
	over gender bias is	n science.					
	a. awarding	b. was awarde	d c. h	as awar	ded	d. awards	
20.	Her lectures ar	nd writings refle	ected a b	elief th	at scien	tists must	engage
	the m	noral dimensions	of their w	ork.			
	a. on	b. with	c. a	t		d. within	
21.	Meitner's rejection	on of the title "1	nother of	the ato	omic bor	mb" illustr	ates her
	belief that science	sep	arated fro	m milita	ıry aims.		
	a. ought to be	b. mustn't	c. i	s not		d. had	
22.	The experiments	in H	Berlin wer	e later	reinterpro	eted by Me	eitner as
	evidence of fission	1.					
	a. to conduct	b. conducted	c. c	onducti	ng d.	having co	nducted
23.	Meitner was the fi	rst woman admit	ted to		_ physics	s departme	nt of the
	University of Vier						
	a. –	b. a	c. t	ne		d. one	
24.	She opposed not	only misogyny		als	o anti-S	emitism, s	peaking
	against both open						
	a. and	•	c. c	r		d. so	
25.	Meitner's critics of				t in fact		a
	central role in idea			•			
	a. plays			laying		d. had pla	yed

I. Read the text and answer the questions that follow.

Augusta Ada Byron (1815–1852), known as Ada Lovelace, is recognized today as the world's first computer programmer. Born into privilege yet beset by familial tension – her father was Lord Byron, and her mother a mathematician – Ada was raised apart after her parents separated when she was an infant.

Despite delicate health, including a year-long struggle with measles, Ada received rigorous homeschooling designed to focus on logic and mathematics rather than romantic arts. This early academic foundation set her apart from her contemporaries.

At 18, Ada met Charles Babbage, inventor of the Difference Engine. Captivated by it, she joined him in studying its successor – the Analytical Engine – an early mechanical computer concept. Babbage invited her to translate Luigi Menabrea's French account of the machine. Instead of a direct translation, Ada added <u>extensive</u> annotations – nearly three times longer than the original – illustrating how the machine could calculate Bernoulli numbers. This work is now regarded as the first algorithm intended for machine use.

Ada also <u>foresaw</u> the future potential of computers, suggesting they could compose music or create graphics, not just perform arithmetic. Her concept of "poetical science" combined <u>creativity</u> with analytical thinking.

She later married William King and had three children, though persistent health issues – including heart problems and cancer – <u>limited</u> her productivity. She died in 1852 at the age of 36 and was buried beside her father in Nottingham.

While her contributions were largely overlooked during her short lifetime, modern recognition <u>has grown</u>. Ada Lovelace Day (the second Tuesday of October) <u>commemorates</u> her legacy annually, and the U.S. Department of Defense named a programming language "Ada" in her honor. Scholars continue to <u>debate</u> her role, but it's <u>widely accepted</u> that her vision helped shape computing's future (*After: Ada Lovelace's Endnotes Foretold the Future of Computation https://www.scientificamerican.com/article/ada-lovelaces-180-year-old-notes-previewed-the-future-of-computers/).*

- 1. Why is Ada considered the first programmer?
 - a. She built the Analytical Engine
 - b. She wrote the first algorithm for it
 - c. She taught programming in university
 - d. She named the programming language Ada
- 2. In what way was Ada's schooling distinct from her family background?
 - a. It focused on poetry and literature

	c. It prioritised mathematics and logic d. It left her without formal tutors								
3.	What did her annotations on the Engine include? a. A music composition b. Her translation of Menabrea c. An algorithm for Bernoulli numbers d. A biography of Babbage								
4.	What idea did Ada predict computers could do? a. Build physical engines b. Compose art and music c. Diagnose diseases d. Teach humans								
5.	How has Ada's reputation changed over time? a. She was honored by naming a programming language b. She became less recognized c. She was celebrated only during her life d. She led major computing companies								
	The underlined word <u>received</u> could best be replaced by which of the following: a. gave b. endured c. obtained d. ignored The underlined phrase <u>set her apart</u> could best be replaced by which of the following:								
	a. distinguished her b. isolated her from friends								
0	c. discouraged her progress d. delayed her studies								
8.	The underlined word <u>extensive</u> could best be replaced by which of the following:								
0	a. brief b. simple c. detailed d. optional The underlined word foresew appld best be replaced by which of the following:								
9.	The underlined word <u>foresaw</u> could best be replaced by which of the following: a. remembered b. predicted c. doubted d. ignored								
10.	The underlined word <u>creativity</u> could best be replaced by which of the following:								
	a. repetition b. accuracy c. complexity d. imagination								
11.	The underlined word <u>limited</u> could best be replaced by which of the following: a. enhanced b. restricted c. expanded d. ignored								
	a. cimaneca o. resurctea c. expanded d. ignored								

b. It emphasised arts over math

12.		construction has gro	wn could best be repl	aced by which of the
	following:	1. 1 1. 1	. 1 1	1 1 1
12		-	c. has remained	
13.		word <u>commemorate</u>	es could best be repla	iced by which of the
	following:	1	1.1	1
			c. celebrates	
14.			est be replaced by whi	_
			c. forget	
15.	_	ohrase <u>widely accep</u>	ted could best be repl	aced by which of the
	following:			
	a. generally agree	ed	b. frequently chal	•
	c. seldom noted		d. never addresse	d
	II. Complete the	following sentences	S.	
16.	By the time Ada homeschooling.	met Charles Babba	age, she alreac	ly received extensive
	a. has	b. had	c. was	d. would
17.	Captivated by	the machine, she	joined him in stud	dying its successor,
	the	Analytical Engine.		
			c. was called	d. which calls
18.	She wrote with c	larity, s	she lacked formal prog	gramming tools.
			c. because	
19.			nputers could create a	
	arithmetic.	_	•	•
	a. was	b. must	c. is	d. might have
20.			as considered as innov	
	ideas of her conte			
		-	c. those	d. that
21.			ieto publ	
			c. was continued	
22.		, aftery		
			c. hundreds	d. little
23.			scientists rem	
			c. unless	
24	_		imagination chang	
			c. who's	
25			ed for many years, b	
	increasingly reco		-	
		b. is	c.has been	d. were

I. Read the text and answer the questions that follow.

Edward Jenner (1749–1823), an English country doctor, changed the course of medical history with his discovery of vaccination. At a time when smallpox was devastating Europe, Jenner made the observation that dairymaids who had contracted cowpox – a relatively mild disease – did not seem to fall ill with smallpox. This inspired his <u>landmark</u> 1796 experiment where he deliberately <u>inoculated</u> an eight-year-old boy, James Phipps, with cowpox, and later exposed him to smallpox. The boy remained healthy. This simple but <u>revolutionary</u> method introduced the world to the concept of immunization.

Jenner's scientific approach was shaped by his mentorship under the eminent surgeon John Hunter, who helped cultivate his <u>empiricism</u>. Rather than relying on abstract theory, Jenner focused on observation, experimentation, and repetition. Despite initial <u>criticism</u> from the medical establishment, his vaccine method gained public acceptance and government support. The British Parliament awarded him financial grants to continue his work.

What distinguished Jenner's work was his idea of using a safer virus (cowpox) to generate <u>immunity</u> against a more dangerous one (smallpox). The term *vaccine* itself stems from the Latin word *vacca* (cow), reflecting this origin. His innovation directly contributed to the eventual global <u>eradication</u> of smallpox, declared by the World Health Organization in 1980.

Jenner's impact extended beyond smallpox. He contributed research on other medical and biological topics, including the <u>parasitism</u> of cuckoo birds. Nevertheless, it was his <u>unwavering</u> commitment to immunology that earned him <u>recognition</u> as the "father of immunology." He was knighted and honored during his lifetime and remains a central figure in the history of medicine (*After: Edward Jenner and the history of smallpox and vaccination <u>https://pmc.ncbi.nlm.nih.gov/articles/PMC1200696/</u>)*

- 1. What inspired Jenner's vaccine idea?
 - a. Cowpox's effect on smallpox resistance
 - b. Snake venom immunity
 - c. Church medical doctrines
 - d. Indian herbal medicine
- 2. What was the significance of James Phipps?
 - a. He later vaccinated others against smallpox
 - b. He invented the practice of inoculation
 - c. He introduced the term "vaccine"
 - d. He became part of Jenner's first vaccination experiment

3.	Why was Jenner's approach innovative?a. It used heat to kill virusesb. It employed cowpox to prevent smallpoxc. It used antibioticsd. It involved genetic modification
4.	What was Jenner's professional background? a. Herbalist b. Chemist c. Physician trained through practical experience d. Statistician
5.	What happened as a result of Jenner's discovery? a. A vaccine was created for influenza b. Smallpox mortality remained unchanged c. Smallpox was eventually eradicated d. Vaccines were banned in Europe
6.	The underlined word <u>landmark</u> could best be replaced by which of the following:
7.	a. ordinary b. seminal c. temporary d. insignificant The underlined word <u>inoculated</u> could best be replaced by which of the following:
8.	a. contaminated b. studied c. healed d. injected The underlined word <u>revolutionary</u> could best be replaced by which of the following:
9.	a. traditional b. political c. groundbreaking d. simplistic The underlined word empiricism could best be replaced by which of the following:
10.	a. logic b. practical experimentation c. medicine d. religion. The underlined word <u>criticism</u> could best be replaced by which of the following:
11.	a. disapproval b. recognition c. funding d. support The underlined word <u>immunity</u> could best be replaced by which of the following:
	 a. resistance to a disease b. ignorance of symptoms c. acceptance by society d. genetic superiority
12.	The underlined word <u>eradication</u> could best be replaced by which of the following:
	a. avoidance b. reduction c. complete elimination d. treatment

13.	following:	ned word	<u>parasitism</u>	could	best t	be replaced	l by v	vhich	0Î	the
	· ·	b.	protection	c	. breed	ling	d. ex	ploita	tion	L
14.	The underlin		-			_		-		
	following:			•		1	J			
	a. inconsiste	ent b.	flexible	c	. stead	y	d. pu	blic		
15.	The underli	ned word	recognition	could	best 1	be replaced	l by v	vhich	of	the
	following:									
	a. remembra	ance b.	fame	c	. doub	t	d. lega	ıl own	ersl	nip
	II. Complete	e the follo	wing sentenc	es.						
16.	Smallpox	one of	the deadlies	t diseas	es in E	Europe befor	re Jenn	er cor	ıduc	eted
	his experime					-				
	a. was		had been	c	. has b	een	d. is			
17.	Milkmaids w									
			develop					e deve	lop	ing
18.	Jenner's fin		_			_			_	_
	immunology			Í		-				
	a. laid		lie	c	. had la	aid	d. lay	ying		
19.	The method	_	cowpox as				-	_	er t	han
			infected with	h c	. infect	t with	d. int	fecting	g wi	th
20.	The procedu									
	different cou		1 7		_			1		
	a. was	b.	having	c	. being	Ţ	d. ha	d beer	1	
21.	Jenner's disc									
	a. or		than							
22.	Without Jen	nner's car	eful observa	tions, v	accina	ation		have	e ta	ken
	much longer							-		
	a. will	b.	would	c	. shoul	ld	d. ca	n		
23.	His achieve	ment,	controve	ersial at	first,	gradually	transfo	ormed	int	o a
	cornerstone									
	a. although	b.	unless	c	. despi	te	d. sir	ıce		
24.	Jenner's su				_				inat	tion
			mate medica	-						
	a. established					established	d. est	tablish	ning	•
25.	Jenner was h								_	
	a. yet									

I. Read the text and answer the questions that follow.

Alexander von Humboldt (1769–1859) was a German naturalist, geographer, and explorer whose pioneering work laid the foundation for modern fields such as ecology, climatology, and biogeography. Born into a wealthy Prussian family, Humboldt received a rigorous education in mining engineering, botany, and natural philosophy. Rejecting a comfortable administrative life, he <u>embarked</u> on a five-year scientific <u>expedition</u> through Latin America (1799–1804), collecting tens of thousands of plant, animal, and mineral specimens.

During his travels, Humboldt climbed volcanoes, explored the Amazon, and produced maps showing how the Orinoco and Amazon river systems are connected. He <u>documented</u> altitude's effects on vegetation and proposed early theories of isothermal zones. His <u>observations</u> became key to understanding how geography, climate, and biodiversity interact. Notably, he described what is now called the Humboldt Current, an oceanic flow that <u>shapes</u> the climate and marine life along South America's west coast.

Humboldt's most famous publication, *Kosmos* (Cosmos: A Sketch of a Physical Description of the Universe), sought to unite all scientific knowledge into a single, harmonious vision of nature. He portrayed the Earth as a dynamic, <u>interconnected</u> system where physical forces and life forms are interdependent. This <u>holistic</u> <u>worldview</u> inspired later ecologists, including Darwin, who referred to Humboldt as "the greatest scientific traveler who ever lived."

Although he was widely celebrated in Europe, Humboldt also held socially <u>progressive</u> views. He criticized colonialism, slavery, and environmental destruction, even as he corresponded with global elites. His writings blended rigorous data with vivid, almost poetic prose, which helped <u>communicate</u> science to a broad public.

In addition to his discoveries, Humboldt contributed greatly to the modernization of scientific discourse. He encouraged the use of detailed graphics and maps, supported standardization of measurements, and advocated for open data sharing. By linking <u>disciplines</u> and cultures, Humboldt's legacy continues to influence how we study and protect the planet today (*After: Biography of Alexander Von Humboldt https://www.yourarticlelibrary.com/biographies/alexander-von-humboldt-biography-of-alexander-von-humboldt/24565*).

- 1. What major concept did Humboldt help establish?
 - a. Microbiology
 - b. Ecology and biogeography
 - c. Newtonian physics
 - d. Nuclear chemistry

	a. Trade negotiations		
	b. Colonization		
	c. Scientific exploration		
	d. Military survey		
3.	What is the Humboldt Current?		
	a. A river current in Europe		
	b. A cultural movement		
	c. An ocean flow shaping climate		
	d. A political document		
4	Why is Humboldt's Kosmos significant?		
٦.	a. It unified scientific disciplines		
	b. It provided a political theory		
	c. It outlined legal reforms		
	d. It was a religious text		
	a. It was a religious text		
5.	How did Humboldt influence science co	mmunication?	
	a. He hid results for security		
	b. He only used Latin		
	c. He refused to publish		
	d. He encouraged open data and visuals		
6.	The underlined word embarked coul	d best be replaced	by which of the
	following:		
	a.began b. delayed	c. refused	d. ended
7.	The underlined word expedition cou	ld best be replaced	by which of the
	following:		
	a. a short local walk	b. a journey	
	c. a lecture	d. a vacation	
8.	The underlined word documented con	ald best be replaced	l by which of the
	following:		
	a. ignored b. guesswork		d. opposed
9.	The underlined word observations co	uld best be replaced	l by which of the
	following:		
	a. distractions b. inventions		•
10.	The underlined word shapes could best	=	_
	a. destroys b. ignores	c. influences	d. separates

2. What was the purpose of Humboldt's Latin American expedition?

following:	ould best be replaced	d by which of the
a. functionally separate	b. physically distant	<u> </u>
c. mutually linked	d. culturally mixed	L
12. The underlined phrase <u>holistic worldvi</u>	•	alaced by which of
the following:	ew could best be rep	naced by which of
a. seeing nature as interconnected	h a focus on nerson	al development
c. a religious theory		
13. The underlined word <u>progressive</u> cou	-	-
following:	nd best be replaced	by which of the
a. financially driven	h outdated	
c.aggressive	d. forward-thinking	
14. The underlined word <u>communicate</u> co	~	
following:	and best be replaced	a by which of the
a. convey b. distort	c distort	d conceal
15. The underlined word <u>disciplines</u> cou		
following:	in cost of replaced	of which of the
a. rules b. academic fields	c. penalties	d. offices
II. Complete the following sentences.		
16. Humboldt's travels him to	collect vast amounts	of scientific data.
a. enabled b. enable		
17. While he volcanoes, Hu	umboldt also reco	rded atmospheric
measurements.		
a. climbs b. was climbing		
18. Not only did he collect data, but he also	conclusion	is.
a. drawn b. drawing		
19. By the time he returned to Europe, he _	countless	observations about
climate, geography, and biology.		
a. has made	b. will have made	
c. had made	d. was making	
20. Humboldt insisted that nature should a unified system.	not be studied in is	solation, but rather
a. as b. like	c for	d. about
21. His accounts showed how deforestation		
a. should b. might have		
22. The lectures Humboldt delivered in Be		
by thousands.		attended
a are b were	c had been	d will be

		ions, which ca	arefully recorded,	shaped later scientific
	methods.			
	a. were	b. are	c. have	d. will
24.	Many of his	findings continue to 1	be cited today, prov	ving that his influence
	din	ninished.		
	a. has not	b. did not	c. was not	d. had not
~ -				
25.	His writings v	vere translated widely, _	his imp	act beyond Germany.

I. Read the text and answer the questions that follow.

Hans Albrecht Bethe (1906–2005) was a German-American theoretical physicist whose pioneering research fundamentally reshaped our understanding of stellar structure and nuclear processes in stars. Born in Strasbourg (then part of Germany), Bethe studied theoretical physics in Frankfurt and Munich, earning his PhD under Arnold Sommerfeld. As a Jewish scientist during the rise of Nazism, Bethe was forced to emigrate in the 1930s. He settled in the United States, joining Cornell University, where he remained for most of his career.

In 1938, Bethe published a groundbreaking paper explaining the nuclear reactions that power stars. He demonstrated how hydrogen atoms fuse into helium under <u>immense</u> temperature and pressure, releasing energy – a process known as the proton-proton chain and the CNO (carbon–nitrogen–oxygen) cycle. These theories earned him the Nobel Prize in 1967 and placed him at the <u>forefront</u> of nuclear physics and astrophysics.

Bethe also played a central role in the development of the atomic bomb. During World War II, he led the Theoretical Division of the Manhattan Project at Los Alamos. Though proud of his scientific contributions, Bethe later expressed deep concern over the <u>ethical implications</u> of nuclear weapons. After the war, he became a leading <u>advocate</u> for arms control and international cooperation, contributing to policy debates on nuclear testing and anti-ballistic missile systems.

Bethe was also a <u>prolific</u> educator and mentor. At Cornell, he trained four generations of physicists, many of whom became prominent in their own sphere. He published hundreds of papers across multiple disciplines, including electrodynamics, nuclear physics, astrophysics, material physics, and hydrodynamics. Even in his 80s and 90s, he continued to publish and participate in scientific discourse.

By the time of his death in 2005, Hans Bethe was recognized as a <u>towering</u> figure in 20th-century physics. His legacy is not only scientific but also moral. Bethe exemplified the dual responsibility of the scientist: to pursue knowledge and to reflect on its <u>consequences</u>. He was a rare figure who contributed to both the creation of nuclear power and the movement to contain its destructive potential (*After: Hans Albrecht Bethe https://arxiv.org/pdf/astro-ph/0602203*).

- 1. What earned Hans Bethe the Nobel Prize?
 - a. Inventing the hydrogen bomb
 - b. Discovering radioactive decay
 - c. Explaining how stars produce energy
 - d. Building a nuclear power plant

2. Why did Bethe emigrate from Germany? a. To avoid conscription b. Due to poor research opportunities c. To join the Manhattan Project d. Because of persecution of the Jewish 3. What was Bethe's role during World War II? a. Leader of theoretical research at Los Alamos b. A tank engineer c. A diplomat in Switzerland d. Advocate for pacifism 4. How did Bethe's perspective on nuclear weapons change after the war? a. He supported continued testing b. He became an advocate for arms control c. He avoided political topics d. He denied any ethical responsibility 5. What aspect of Bethe's legacy is emphasized most in the text? a. Business success b. His stance against technological progress c. His scientific and moral leadership d. His invention of the internet 6. The underlined word pioneering could best be replaced by which of the following: a. repetitive b. introductory c.groundbreaking d. misguided 7. The underlined word <u>reshaped</u> could best be replaced by which of the following: a. altered b. ignored c. concealed d. weakened 8. The underlined word groundbreaking could best be replaced by which of the following: b. traditional a. innovative c. trivial d. outdated

9. The underlined word immense could best be replaced by which of the

10. The underlined word forefront could best be replaced by which of the

11. The underlined phrase ethical implications could best be replaced by which of

c. moderate

c. retirement

d. tiny

d. cutting edge

b. enormous

b. background

following: a. immediate

following: a. outskirts

the following:

	a. financial rewards	3	b. political argumen	its
	c. legal gaps	3	d. moral consequen	ces
12.	The underlined wor	rd <u>advocate</u> could bes	st be replaced by which	ch of the following
	a. critic	b. promoter	c. bystander	d. experimenter
13.	The underlined wor	rd <u>prolific</u> could best	be replaced by which	of the following:
	a. productive	b. critical	c. retired	d. charismatic
14.	The underlined wor	rd towering could bes	st be replaced by which	ch of the following
	a. minor	b. insignificant	c. leading	d.ordinary
15.		ord <u>consequences</u> co		
	following:			
	a. inheritance	b. beginnings	c. outcomes	d. disappointment
	II. Complete the fo	llowing sentences.		
16.	The reactions he de	escribed deep	within stars.	
	a. happen	b. happens	c. happening	d. is happening
17.	Many scientists tod	lay are inspired	Bethe's ethical sta	nce.
	a. by	b. with	c. from	d. on
18.	He is remembered	as someonei	ntellect served human	nity.
	a. which	b. whose	c. that	d. whom
19.	Bethe's research	demonstrated how	hydrogen atoms	fuse into helium,
	energy	y under immense pres	ssure.	
	a. released	b. having released	c. release	d. releasing
20.	Bethe contributed	to electrodynamics	and astrophysics, as	s well as to fields
	hydro	dynamics and materia	al physics.	
	a. such that	b. so	c. such as	d. like to
21.	Had Bethe not left	Germany in the 193	30s, his scientific care	eer been
	severely restricted.			
	a. will have	b. would have	c. might	d. had
22.	Bethe suggested that	at nuclear science	guided by ethic	cal responsibility.
	a. be	b. is	c. was	d. being
23.	The fact that Be	ethe continued pub	lishing into his n	ineties shows his
	comm	itment to science.		
	a. endures	b. endure	c. endurance	d. enduring
24.	Bethe's role at Lo	os Alamos,	leading the Th	eoretical Division,
	placed him at the he	eart of the Manhattan	Project.	
	a. which involved	b. it was	c. that was	d. involving in
25.	Bethe's legacy, bo	oth scientific and m	oral, is regarded as	one of the most
	significant of the 2	0th century,	many still debat	te the full extent of
	his contributions.			
	a. because	b. despite	c. although	d. even

I. Read the text and answer the questions that follow.

Barbara McClintock (1902–1992) is remembered as one of the most original minds in modern biology. Her discovery of transposable elements – "jumping genes" – transformed genetics by showing that the genome is not fixed but dynamic, able to rearrange itself in response to internal and external factors. Today, her ideas <u>underpin</u> much of molecular biology and biotechnology, from gene regulation to CRISPR.

Born in Hartford, Connecticut, McClintock studied at Cornell University, where she completed her bachelor's, master's, and PhD in botany. Fascinated by maize genetics, she became a pioneer in cytogenetics, linking chromosome behavior with inherited traits. <u>Despite</u> her achievements, Cornell <u>denied her a faculty post</u>, reflecting the gender barriers of her era.

After a brief period in Germany, she returned to the United States and later joined the University of Missouri. In 1941, seeking independence, she moved to Cold Spring Harbor Laboratory, where she could <u>devote</u> herself entirely to research. There she made her boldest discovery. While crossbreeding maize and examining kernels under the microscope, she noticed irregular color patterns that suggested genes could move within chromosomes. In 1951, she announced her <u>findings</u>, showing that these "jumping genes" could activate or silence other genes, reshaping observable traits. Her theory, however, <u>challenged</u> the accepted view of a stable genome. Many dismissed her work, and she was sometimes labeled eccentric. McClintock nevertheless persisted, trusting her observations: "I just knew I was right," she later recalled.

For decades, her research was overlooked. Only in the 1970s, when molecular biologists found similar elements in bacteria, did the scientific community recognize the importance of her discovery. Suddenly, her long-ignored work was seen as visionary. Recognition came late but decisively. In 1983, at the age of 81, McClintock received the Nobel Prize in Physiology or Medicine, becoming the first woman to win it alone. The award honored not just her discovery, but her perseverance, independence, and scientific integrity (After: By Studying Corn, Barbara McClintock Unlocked the Secrets of Life https://www.smithsonianmag.com/smithsonian-institution/by-studying-corn-barbara-mcclintock-unlocked-secrets-life-180981555/)

- 1. Why was McClintock's discovery of transposable elements initially rejected by the scientific community?
 - a. It lacked experimental evidence
 - b. It challenged established genetic theories
 - c. It was published in an obscure journal
 - d. It contradicted her own earlier findings

2. What was the significance of McClin 1941?a. It allowed her to focus on researchb. She became the first female professorc. She collaborated with German scientd. It marked the end of her active career	r there ists on maize genetics	Spring Harbor in
3. How did McClintock's research method a. She relied on mathematical models rab. She studied animal genetics instead a. She avoided laboratory work and food. She used meticulous crossbreeding a.	ather than experiments of plant genetics used on theory	
4. Why is McClintock's Nobel Prize in 198. a. It was awarded jointly with Otto Hah b. It was the first Nobel Prize ever give c. She was the first woman to win the P d. It marked the last Nobel Prize awarde	n n for plant biology hysiology/Medicine Pi	
5. What personal quality of McClintock knew I was right nobody can turn you a. Arrogance b. Intellectual humility c. Persistence and confidence d. Preference for teamwork		
 6. The underlined word <u>underpin</u> could best a. complicate b. underestimate 7. The underlined word <u>despite</u> could best a. during b. because 8. The underlined phrase <u>denied her a facuor</u> of the following: a. offered her a job c. gave her recognition 	c.oppose be replaced by which of c.regardless of	d. support of the following: d. after replaced by which
 9. The underlined word devote could best be a dedicate box avoid 10. The underlined word findings could best a results box failures 11. The underlined word challenged count following: 	c. divide t be replaced by which c. beliefs lld best be replaced	d. replace n of the following d. questions by which of the
a. accepted b. questioned	c. supported	d. denied

12.The underlined following:	d word <u>visionary</u> cou	ld best be replaced	by which of the
a. ordinary	b. innovative	c. outdated	d. highlighted
	word perseverance co		
a. avoidance	b. laziness	c. hesitation	d. persistence
14. The underlined	word independence of	could best be replace	ed by which of the
following:			
a. autonomy	b. dependence	c. obedience	d. connection
15. The underlined	word integrity could be	est be replaced by whi	ch of the following
a. talent	b. popularity	c. ethics	d. education
II. Complete the	e following sentences.		
	nallenged existing theor		
a. and		c. but	
	o work alone rather		
	b. then		
	ion came long after she		
	b.had done		
19.Her research	findings were initial	ly dismissed,	they later
transformed gen			
	b. though		
20. It was Barbara	McClintock's persiste	ence, not external app	oroval,
kept her research			
	b. what		
21. Had Cornell o	ffered McClintock a fa	aculty post, her caree	er very
differently.			
a. may proceed		b. might have proc	eeded
c. would procee	ed	d. had proceeded	
22.Her discovery	of transposable elemen	ts revol	utionary by modern
scholars.			
a. considered	b. has considered	c. is considered	d. considers
23.She received t	he Nobel Prize in 19	83, becoming the f	irst woman to win
	ard alone in Physiology	_	
a. –	b. an	c. a	d. the
24.She preferred so	olitude in the lab to		
	lents or writing reports 1		nd writing reports
_	s or wrote reports		
	nat her work acknow	~	-
a. is	b. was	c. be	d. being

I. Read the text and answer the questions that follow.

John Clive Ward (1924–2000) was a <u>brilliant</u> but <u>modest</u> theoretical physicist whose work helped lay the <u>foundation</u> of modern quantum physics.

Ward was born in East Ham, London, and studied at Oxford University, where he worked under physicist Maurice Pryce. Although he was not a prolific writer, Ward published a number of highly influential papers. One of his most famous contributions is the Ward Identity, a key result in quantum electrodynamics (QED). This principle helps remove infinities from calculations in particle physics and ensures that equations describing interactions between particles remain mathematically <u>consistent</u>. Today, the Ward Identity is a standard part of quantum field theory.

In addition to his work on QED, Ward also made early contributions to quantum entanglement. Together with Pryce, he published one of the first theoretical studies of two photons produced during electron-positron annihilation. This work <u>predicted</u> how pairs of particles could remain connected, even when separated by long distances – a concept that would later become central in quantum mechanics and quantum information science.

Throughout his career, Ward worked in broad range of physical theories. He collaborated with Nobel laureate Abdus Salam on theories about weak nuclear forces, and he also studied statistical mechanics, including the behavior of electron gases and superfluid helium. His research was known for its <u>clarity</u> and <u>accuracy</u>.

Ward's scientific knowledge was also applied to national defense. In 1955, he joined the UK Atomic Weapons Research Establishment at Aldermaston, where he led a theoretical group working on hydrogen bomb designs. His understanding of complex equations helped improve the accuracy of nuclear models.

Although Ward received many <u>honours</u>, including the Dirac Medal, Hughes Medal, and election to the Royal Society, he chose a quiet academic life. He preferred to focus on his own ideas rather than seek fame or influence. He worked at several universities around the world, including the Institute for Advanced Study in Princeton and Macquarie University in Sydney. <u>Remarkably</u>, he never supervised PhD students and <u>avoided</u> the administrative side of academic life. Though his name is not widely known outside the scientific community, Ward's legacy lives on in the tools, methods, and ideas that physicists use every day (*After: John Ward: Memoir of a Theoretical Physicist https://arxiv.org/pdf/2007.16199*)

- 1. Why is John Ward considered important in modern physics?
 - a. He was a famous inventor of lab equipment
 - b. He helped build quantum field theory
 - c. He taught hundreds of students
 - d. He wrote many popular science books

b. To measure grace.c. To solve problem.d. To find new elements.	ems with equations i	in particle physics	
a. He discovered b. He proved pho c. He studied how	how light bends in so tons have mass w pairs of photons can new type of laser	space	
a. They worked ob. They studied ac. They created n	esearch group at Ala on military defense p unimals in space new farming methods d science textbooks	projects	
a. He became a pb. He started a urc. He refused to o	oolitician niversity	lifferent from others? e)
 a. intelligent 7. The underlined wa. arrogant 8. The underlined following: a. base 9. The underlined following: a. unstable 10.The underlined following: a. foresaw 11.The underlined wa. secrecy 	b. dim yord modest could be b. humble word foundation of b. roof word consistent of b. random word predicted co b. ignored word clarity could be b. confusion	c. average est be replaced by wheelest be replaced by wheelest be replaced best be replaced best be replaced best be replaced best be replaced by wheelest by the replaced by wheelest by the replaced by wheelest by the replaced by wheelest be replaced by wheelest by the replaced	d. regular ced by which of the d. delayed nich of the following:
a. mistake	b. precision	c. doubt	d. vagueness

2. What is the Ward Identity used for? a. To calculate the weight of atoms

13.The underlined	d word <u>honours</u> cou	ald best be replaced by	which of the following:
=		c. duties	_
14.The underline	d word <u>remarkab</u>	<u>ly</u> could best be repl	aced by which of the
following:			
		c. poorly	
		=	which of the following:
a. met	b. confronted	d c. faced	d. evaded
II. Complete ti	he following senter	nces.	
16. John Ward	in Londo	on in 1924.	
		c. was born	d. has been born
17. Although he_	few pa	pers, they were highly	important.
a. write	b. wrote	c. has written	d. was writing
18. He never	awards for	r popularity, only for so	cience.
a. receives	b. received	c. has received	d. receiving
19.If more people	knew his story, the	eysee his	true impact.
a. can	b. will	c.would	d. must
		ydney, he alre	eady published several
groundbreakin			
		c. was having	
			name might have been
· ·	nown outside physi		
		c. had been	
22.Although he in		th many leading so	eientists, he preferred
a. to work	b. working	c. work	d. having worked
23.Rarely a s	cientist so respecte	d for precision choose	such a modest lifestyle.
a. has	b. did	c. do	d. had
24. The fact that	it Ward never s	supervised PhD stude	ents remains unusual,
hi	is long academic ca	areer.	
a. given			d. because
25.His theories, l	peing	explained, became sta	ndard tools in quantum
field theory.			
 carefully 	b. careful	c. care	d. be careful

I. Read the text and answer the questions that follow.

Marie Curie (1867–1934) remains one of the most <u>remarkable</u> figures in modern science, not only for her pioneering research in radioactivity but also for her role as an educator and mentor. Born in Warsaw and later working in Paris, she overcame poverty, political restrictions, and discrimination against women to transform physics and chemistry.

Curie's most famous scientific <u>accomplishments</u> include the discovery of two new elements, polonium and radium, and the development of methods to isolate and measure radioactive substances. Her rigorous work laid the foundation for nuclear physics and medical applications such as radiation therapy. She became the first person, and remains the only woman, to win Nobel Prizes in two different sciences – physics and chemistry.

Yet her influence extended far beyond her own experiments. Curie believed that science had to be pursued with honesty, precision, and a sense of moral responsibility. She trained many young researchers, insisting on careful measurement, <u>transparency</u> of results, and persistence in the face of uncertainty. Her laboratory became a model of scientific integrity, where intellectual curiosity and ethical responsibility were inseparable.

During World War I, Curie applied her scientific expertise to humanitarian needs. She organized mobile X-ray units for battlefield hospitals and personally trained medical staff, including young students, to use the machines safely. In doing so, she not only saved lives but also demonstrated how scientific knowledge could be applied directly to <u>urgent</u> social problems.

Curie's life also revealed the challenges of balancing <u>personal commitments</u> with professional ambition. She raised two daughters while maintaining an intense research schedule, often working in conditions that <u>endangered</u> her health due to prolonged exposure to radiation. Her struggles with illness, as well as with public <u>scrutiny</u>, show the personal costs of groundbreaking science. Still, she remained committed to discovery and teaching until her final years.

Her legacy is therefore twofold. Scientifically, she changed our understanding of matter and energy, and her discoveries continue to underpin modern physics, chemistry, and medicine. Culturally, she demonstrated that a scientist's duty extends beyond the laboratory to education, ethical practice, and the service to society. Curie's example shows that scientific progress requires not only intelligence and creativity, but also resilience, mentorship, and moral courage (After: The Elements of Marie Curie by Dava Sobel review – the great scientist who created her own school

https://www.theguardian.com/books/2024/nov/11/the-elements-of-marie-curie-by-dava-sobel-review-the-great-scientist-who-created-her-own-school)

- 1. What made Marie Curie unique among Nobel laureates? a. She was the first scientist to work in Paris b. She won prizes in both physics and chemistry c. She developed nuclear weapons d. She trained only medical doctors 2. What role did Curie play during World War I? a. She discovered new radioactive elements b. She moved her lab to the United States c. She provided medical equipment and trained staff d. She developed a cure for radiation sickness 3. Which of the following best describes Curie's laboratory environment?
- - a. A place of secrecy and competition
 - b. A factory for producing radium
 - c. A space where ethics and research combined
 - d. A hospital for training doctors
- 4. What personal challenge most directly affected Curie's health?
 - a. Exposure to radioactive materials
 - b. Stress from teaching
 - c. Long diplomatic missions
 - d. Frequent travel to Warsaw
- 5. What is presented as Curie's lasting legacy?
 - a. Fame and wealth
 - b. Nuclear power plants
 - c. Political leadership
 - d. Knowledge and moral responsibility in science
- 6. The underlined word <u>remarkable</u> could best be replaced by which of the following:
 - a. ordinary b. exceptional c. typical d. unimportant
- 7. The underlined word accomplishments could best be replaced by which of the following:
 - a. mistakes b. shortcomings c. estimations d. achievements
- 8. The underlined word <u>transparency</u> could best be replaced by which of the following:
 - a. openness b. secrecy c. dishonesty d bias

9.	The underlined phra	ase <u>urgent</u> could best	be replaced by which	h of the following:
	a. optional	b. minor	c. pressing	d. trivial
10	. The underlined phr	ase personal commit	ments could best be	replaced by which
	of the following:			
		b. experiments	c. awards	d. discoveries
11.	. The underlined wo	ord <u>endangered</u> coul	ld best be replaced	l by which of the
	following:	_	_	
	a. protected	b. saved	c. threatened	d. healed
12	. The underlined wor	d scrutiny could best	be replaced by which	ch of the following:
	a. criticism	b. protection	c. isolation	d. secrecy
13	. The underlined w	ord resilience could	d best be replaced	by which of the
	following:			
	a. weakness	b. endurance	c. simplicity	d. fragility
14	.The underlined wo	ord mentorship coul	ld best be replaced	l by which of the
	following:			
	a. control	b. secrecy	c. separation	d.guidance
15	.The underlined phr	rase <u>moral courage</u> c	ould best be replac	ed by which of the
	following:			
	a. financial aid		b. ethical bravery	
	c. intellectual curios	sity	d. social politeness	
	II. Complete the fol	llowing sentences.		
16	1	G	867.	
16	. Marie Curie	in Warsaw in 1		d. was born
	. Marie Curiea. born	in Warsaw in 1 b. had born	c. has born	
17	. Marie Curiea. born	in Warsaw in 1 b. had born won her second N	c. has born	
17	. Marie Curie a. born . By the time she discovered two elem	in Warsaw in 1 b. had born won her second N	c. has born	already
17	a. born By the time she discovered two elen a. has	in Warsaw in 1 b. had born won her second Nonents. b. had	c. has born lobel Prize, she c. was having	d. will have
17	a. born By the time she discovered two elen a. has	in Warsaw in 1 b. had born won her second Nonents. b. had 1 Curie	c. has born lobel Prize, she c. was having	d. will have
17	a. born By the time she discovered two elen a. has It was not until 191 Nobel Prize, this time	in Warsaw in 1 b. had born won her second Nonents. b. had 1 Curie	c. has born lobel Prize, she c. was having was finally recognize	d. will have
17 18	a. born By the time she discovered two elen a. has It was not until 191 Nobel Prize, this tim a. which	in Warsaw in 1 b. had born won her second Nonents. b. had 1 Curie ne in Chemistry.	c. has born lobel Prize, she c. was having was finally recognize c. what	d. will have zed with her second d. how
17 18	a. born By the time she discovered two elen a. has It was not until 191 Nobel Prize, this tim a. which	in Warsaw in 1 b. had born won her second Nonents. b. had 1 Curie ne in Chemistry. b. when	c. has born lobel Prize, she c. was having was finally recognize c. what	d. will have zed with her second d. how
17 18	a. born By the time she discovered two elen a. has It was not until 191 Nobel Prize, this tim a. which	in Warsaw in 1 b. had born won her second Nonents. b. had 1 Curie ne in Chemistry. b. when	c. has born lobel Prize, she c. was having was finally recognize c. what so measured its prop	d. will have zed with her second d. how perties.
17 18 19	a. born By the time she discovered two elen a. has It was not until 191 Nobel Prize, this tim a. which Not only a. she discovered c.discovered she	in Warsaw in 1 b. had born won her second Nonents. b. had 1 Curie ne in Chemistry. b. when	c. has born lobel Prize, she c. was having was finally recogniz c. what so measured its prop b. did she discover d.has she discovered	d. will have zed with her second d. how perties.
17 18 19	a. born By the time she discovered two elema. has It was not until 191 Nobel Prize, this tima. which Not onlya. she discovered c.discovered she Despite	in Warsaw in 1 b. had born won her second Nonents. b. had 1 Curie ne in Chemistry. b. when radium, but she al	c. has born lobel Prize, she c. was having was finally recogniz c. what so measured its prop b. did she discover d.has she discoveresucceeded in her car	d. will have zed with her second d. how perties.
17 18 19 20	a. born By the time she discovered two elen a. has It was not until 191 Nobel Prize, this tim a. which Not only a. she discovered c.discovered she Despite a. facing	in Warsaw in 1 b. had born won her second Nonents. b. had 1 Curie ne in Chemistry. b. when radium, but she al	c. has born lobel Prize, she c. was having was finally recognize c. what so measured its prop b. did she discovere d.has she discovere succeeded in her car c. faced	d. will have zed with her second d. how perties.
17 18 19 20	a. born By the time she discovered two elen a. has It was not until 191 Nobel Prize, this tim a. which Not only a. she discovered c.discovered she Despite a. facing	in Warsaw in 1 b. had born won her second Nonents. b. had 1 Curie ne in Chemistry. b. when radium, but she al many barriers, she b. face	c. has born lobel Prize, she c. was having was finally recognize c. what so measured its prop b. did she discovere d.has she discovere succeeded in her car c. faced	d. will have zed with her second d. how perties.
17 18 19 20 21	a. born By the time she discovered two elen a. has It was not until 191 Nobel Prize, this tim a. which Not only a. she discovered c.discovered she Despite a. facing Her laboratory be inseparable. a. are	in Warsaw in 1 b. had born won her second Nonents. b. had 1 Curie ne in Chemistry. b. when radium, but she al many barriers, she b. face ecame a place wh	c. has born lobel Prize, she c. was having was finally recognize c. what so measured its prop b. did she discovere d.has she discovere succeeded in her car c. faced ere science and co	d. will have zed with her second d. how perties.
17 18 19 20 21	a. born By the time she discovered two elen a. has It was not until 191 Nobel Prize, this tim a. which Not only a. she discovered c.discovered she Despite a. facing Her laboratory be inseparable. a. are	in Warsaw in 1 b. had born won her second Nonents. b. had 1 Curie ne in Chemistry. b. when radium, but she al many barriers, she b. face ecame a place wh	c. has born lobel Prize, she c. was having was finally recognize c. what so measured its prop b. did she discovere d.has she discovere succeeded in her car c. faced ere science and co	d. will have zed with her second d. how perties.

23. If Curie	alive today, she would likely support girls in STEM.			
a. is	b. was	c. were	d. be	
24. Curie was admii	ed not only for her k	nowledge but also fo	or her	
a. determined	b. determine	c.determiner	d. determination	
25. Curie's legacy,	both scientific and n	noral, remains influe	ential, the	
many obstacles	she faced as a woman	n in science.		
a. in case of	b. due to	c.in spite of	d. so that	

ANSWER KEY

Test 1. James Lovelock

1.b	6.c	11.d	16.c	21.b
2.c	7.b	12.c	17.b	22.a
3.b	8.d	13.b	18.b	23.b
4.c	9.c	14.a	19.b	24.b
5.c	10.b	15.a	20.d	25.a

Test 2. Henri Poincaré

1.b	6.b	11.a	16.b	21.c
2.a	7.a	12.b	17.a	22.b
3.b	8.a	13.a	18.d	23.c
4.b	9.d	14.d	19.a	24.b
5.d	10.c	15.c	20.a	25.b

Test 3. Daniel Augusto da Silva

1.d	6.c	11.d	16.b	21.a
2.c	7.c	12.b	17.a	22.a
3.b	8.d	13.a	18.b	23.b
4.a	9.c	14.b	19.c	24.b
5.c	10.a	15.d	20.b	25.c

Test 4. Murray Gell-Mann

1.b	6.c	11.c	16.a	21.c
2.c	7.b	12.d	17.c	22.c
3.d	8.c	13.a	18.b	23.d
4.c	9.c	14.a	19.a	24.c
5.b	10.d	15.b	20.a	25.a

Test 5. Alfred Russel Wallace

1.c	6.b	11.b	16.b	21.a
2.c	7.a	12.c	17.c	22.a
3.a	8.b	13.a	18.a	23.b
4.b	9.c	14.c	19.b	24.d
5.d	10.d	15.b	20.c	25.b

Test 6. Carl Linnaeus

1.c	6.b	11.b	16.c	21.b
2.b	7.a	12.c	17.d	22.c
3.c	8.c	13.a	18.a	23.a
4.d	9.b	14.a	19.c	24.d
5.b	10.d	15.d	20.b	25.a

Test 7. Charles Darwin

1.b	6.c	11.b	16.c	21.d
2.c	7.b	12.b	17.a	22.c
3.a	8.d	13.a	18.b	23.a
4.b	9.a	14.c	19.c	24.b
5.d	10.c	15.d	20.b	25.d

Test 8. Isaac Newton

1.c	6.c	11.b	16.c	21.d
2.b	7.b	12.c	17.d	22.b
3.c	8.a	13.a	18.a	23.b
4.d	9.c	14.c	19.a	24.b
5.a	10.d	15.d	20.c	25.a

Test 9. Chandrasekhara Venkata Raman

1.b	6.a	11.c	16.c	21.d
2.a	7.b	12.d	17.b	22.a
3.b	8.a	13.d	18.c	23.b
4.d	9.c	14.a	19.a	24.c
5.c	10.a	15.b	20.a	25.a

Test 10. James Chadwick

1.c	6.b	11.c	16.a	21.b
2.b	7.c	12.b	17.a	22.a
3.b	8.b	13.a	18.b	23.a
4.d	9.a	14.a	19.a	24.d
5.a	10.b	15.b	20.d	25.c

Test 11. Richard Feynman

1.b	6.b	11.a	16.a	21.a
2.b	7.b	12.c	17.a	22.c
3.c	8.b	13.b	18.d	23.c
4.c	9.c	14.d	19.b	24.b
5.a	10.d	15.b	20.c	25.a

Test 12. Steven Weinberg

1.a	6.b	11.d	16.a	21.b
2.b	7.b	12.b	17.b	22.c
3.c	8.c	13.b	18.a	23.d
4.c	9.d	14.a	19.b	24.d
5.b	10.a	15.c	20.c	25.c

Test 13. Lise Meitner

1.b	6.a	11.b	16.c	21.a
2.c	7.b	12.a	17.a	22.b
3.c	8.d	13.a	18.d	23.c
4.b	9.a	14.c	19.b	24.b
5.d	10.c	15.d	20.b	25.d

Test 14. Augusta Ada Byron

1.b	6.c	11.b	16.b	21.a
2.c	7.a	12.b	17.a	22.b
3.c	8.c	13.c	18.a	23.d
4.b	9.b	14.d	19.d	24.a
5.a	10.d	15.a	20.b	25.a

Test 15. Edward Jenner

1.a	6.b	11.a	16.b	21.b
2.d	7.d	12.c	17.a	22.b
3.b	8.c	13.d	18.a	23.a
4.c	9.b	14.c	19.d	24.c
5.c	10.a	15.b	20.c	25.a

Test 16. Alexander von Humboldt

1.b	6.a	11.c	16.a	21.d
2.c	7.b	12.a	17.b	22.b
3.c	8.c	13.d	18.c	23.a
4.a	9.d	14.a	19.c	24.a
5.d	10.c	15.b	20.a	25.c

Test 17. Hans Albrecht Bethe

1.c	6.c	11.d	16.a	21.b
2.d	7.a	12.b	17.a	22.a
3.a	8.a	13.a	18.b	23.d
4.b	9.b	14.c	19.d	24.a
5.c	10.d	15.c	20.c	25.c

Test 18. Barbara McClintock

1.b	6.d	11.b	16.d	21.b
2.a	7.c	12.c	17.a	22.c
3.d	8.b	13.d	18.b	23.d
4.c	9. a	14.a	19.b	24.a
5.c	10.a	15.c	20.c	25.c

Test 19. John Clive Ward

1.b	6.a	11.c	16.c	21.c
2.c	7.b	12.b	17.b	22.a
3.c	8.a	13.b	18.b	23.b
4.a	9.d	14.a	19.c	24.a
5.d	10.a	15.d	20.a	25.a

Test 20. Marie Curie

1.b	6.b	11.c	16.d	21.d
2.c	7. d	12.a	17.b	22.a
3.c	8. a	13.b	18.b	23.c
4.a	9. c	14.d	19.b	24.d
5.d	10.a	15.b	20.a	25.c

RECOMMENDED RESOURCES

- 1. Ilchenko, O. M. (2024). *Англійська для науковців. The language of science: Підручник* (8th ed., rev.). Київ: Видавниче підприємство "ЕДЕЛЬВЕЙС." [eBook]. https://langcenter.kiev.ua/documents/2024/2024_TEXTBOOK%20ILCHENKO_8-20-12-24.pdf
- 2. Ільченко, О., Крамар, Н., Шелковнікова, З., & Бедрич, Я. (2025). Академічна англійська: Опорні конспекти до занять = Academic English: Class takeaways (3rd ed., rev.). Київ: Видавниче підприємство «ЕДЕЛЬВЕЙС». [eBook]. https://langcenter.kiev.ua/documents/2025/Academic%20English_Class%20Takeaway 3rd ed Ilchenko Kramar%20et%20al.pdf
- 3. Ільченко, О., Крамар, Н., Шелковнікова, З., & Бедрич, Я. (2025). Академічна англійська рівня С1: Дорожня карта курсу (довідник для аспірантів) = Academic English C1: Course roadmap for PhD students (a guide). Київ: Видавниче підприємство «ЕДЕЛЬВЕЙС». [eBook]. https://langcenter.kiev.ua/documents/2025/2025_Academic%20English_Course%20Roadmap_Ilchenko_Kramar_et%20al.pdf
- 4. Ільченко, О., Крамар, Н., Шелковнікова, З., & Бедрич, Я. (2025). *TechForward:* Орієнтир у світі сучасних інновацій. *Tecmu з англійської мови просунутого рівня для цифрової enoxu = TechForward: Navigating modern innovation. Advanced English tests for the digital age.* Київ: Видавниче підприємство "ЕДЕЛЬВЕЙС." [eBook]. https://olgailchenkoauthor.wordpress.com/wp-content/uploads/2017/01/2025_techforward-tests-ilchenko-kramar-et-al-1.pdf
- 5. Ilchenko, O., Kramar, N., Bedrych, Y., & Shelkovnikova, Z. (2023). *Test your English: Тести з англійської*. Київ: Видавниче підприємство "ЕДЕЛЬВЕЙС." [eBook]. https://langcenter.kiev.ua/documents/2025/2023_TESTS_Ilchenko_Kramar%20et%20al.pdf
- 6. Ilchenko, O. M., & Myroniuk, T. M. (2018). Reading, vocabulary, grammar and listening comprehension tests (for PhD candidates): Навчальний посібник для аспірантів. Київ: Видавниче підприємство "ЕДЕЛЬВЕЙС." [eBook]. https://olgailchenkoauthor.wordpress.com/wp-content/uploads/2017/01/2018_ilchenkomyroniuk_tests.pdf
- 7. Smithsonian Magazine. (n.d.). *Women in science*. https://www.smithsonianmag.com/science-nature/women-science-180967866/
- 8. The History Channel. (n.d.). *History of inventions*. https://www.history.com/topics/inventions
- 9. The History Channel. (n.d.). History 250. https://www.history.com/250

НАЦІОНАЛЬНА АКАДЕМІЯ НАУК УКРАЇНИ

ЦЕНТР НАУКОВИХ ДОСЛІДЖЕНЬ ТА ВИКЛАДАННЯ ІНОЗЕМНИХ МОВ

Навчальне видання

Миронюк Т. Мова наукових відкриттів: тести з академічної англійської для аспірантів. The Language of Scientific Discovery: Academic English Tests for PhD Students. — Навчальний посібник. — К.: Видавниче підприємство "ЕДЕЛЬВЕЙС," 2026. — 76 с.

В авторській редакції

Комп'ютерна верстка – Миронюк Т.М.

Підп. до друку 14.10.2025р.,формат 60/84/8
Ум. друк. арк. – 9,5, обл.вид.арк. – 8,84
Наклад 50 прим.,Зам. № 1016
Друк: ФОП Пилипенко Н.М.
Видавець: ТОВ «ВП Едельвейс»
Свідоцтво про державну реєстрацію суб'єкта видавничої діяльності Серія ДК №4249 від 29.12.2011 р.